
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Geometric Deep Learning

Author:
Shunwang Gong

Supervisor:
Stefanos Zafeiriou

Submitted in partial fulfillment of the requirements for the MSc degree in Advanced
Computing of Imperial College London

September 2018

Abstract

Machine Learning on graphs and manifolds are important ubiquitous tasks with applica-
tions ranging from network analysis to 3D shape analysis. Traditionally, machine learning
approaches relied on user-defined heuristics to extract features encoding structural infor-
mation about a graph or mesh. Recently, there has been an increasing interest in geometric
deep learning [6] that automatically learns signals defined on graphs and manifolds. We
are then motivated to apply such methods to address the multifaceted challenges arising
in computational biology and computer graphics for decades, i.e. protein function predic-
tion and 3D facial expression recognition. Here we propose a deep graph neural network
to successfully address the semi-supervised multi-label classification problem (i.e. protein
function prediction). With regard to 3D facial expression recognition, we propose a deep
residual B-Spline graph convolution network, which allows for end-to-end training and
inference without using hand-crafted feature descriptors. Our method outperforms the
current baseline results on 4DFAB [10] dataset.

ii

Acknowledgments

I would like to thank my supervisor Dr Stefanos Zafeiriou, and Prof Michael Bronstein for
all their support and guidance throughout the thesis.

Additionally I’d like to thank all of the researchers for providing support, resources, and
conversations, especially Dr Vladimir Gligorijevic (Simons Foundation, my collaborator on
the problem of Protein Function Prediction), Shiyang Cheng (PhD student at iBug group
Imperial College London, providing me valuable 4DFAB database [10] (2017) to start my
work on analyzing 3D Facial Expressions), Mehdi Bahri (PhD student at Imperial College
London), Matthias Fey (PhD student at TU Dortmund University), Yun Wang (PhD student
at Language Technologies Institute (LTI), Carnegie Mellon University (CMU)).

Finally, I’d like to thank the Computing Support Group at Imperial College London for
providing me with a NVIDIA GTX 1080 and GPU clusters used in this thesis.

iii

Contents

1 Introduction 1
1.1 Overview . 1

1.1.1 Traditional Machine Learning on Graphs and Manifolds 1
1.1.2 Widespread Prosperity of Deep Learning on Euclidean Domains . . 2
1.1.3 Geometric Deep Learning . 3

1.2 Background . 4
1.2.1 Protein Function Prediction . 4
1.2.2 3D Facial Expression Recognition 5

1.3 Thesis Statement . 7
1.4 Contributions . 7

2 Preliminaries on Deep Learning from Euclidean Domains 8
2.1 Convolutional Neural Networks . 8

2.1.1 Convolutional Layer . 9
2.1.2 Pooling Layer . 10
2.1.3 Activation Layer . 11
2.1.4 Fully Connected Layer . 12

2.2 Autoencoder . 13
2.2.1 Structure . 13
2.2.2 Denoising Autoencoder . 14

3 Preliminaries on Graph Theory 15
3.1 Basic Defintions and Notations . 15
3.2 Spectral Graph Theory . 16

3.2.1 Graph Laplacian . 16
3.2.2 Graph Fourier Transform . 17
3.2.3 Discrete Calculus and Signal Smoothness 18
3.2.4 Filtering . 20
3.2.5 Graph Convolution . 22
3.2.6 Translation . 22

3.3 Graph Coarsening . 23

4 Spectral and Spatial Graph Convolutions and Evaluation 26
4.1 Spectral Convolution Operations . 26

4.1.1 General Spectral Graph CNNs . 26
4.1.2 Vanilla Spectral Graph CNNs . 29

v

CONTENTS Table of Contents

4.1.3 SplineNets . 31
4.1.4 ChebNets . 33
4.1.5 GraphConvNets . 35

4.2 Spatial Graph Convolution Operations . 36
4.2.1 General Spatial Graph Convolution 36
4.2.2 GeodesicCNN . 37
4.2.3 AnisotropicCNN . 38
4.2.4 MoNet . 39
4.2.5 SplineCNN . 40

4.3 Evaluation . 41
4.3.1 Semi-Supervised Graph Node Classification 44
4.3.2 3D Shape Correspondence . 48

5 Protein Function Prediction 50
5.1 Problem Definition . 51
5.2 Multi-Layer Graph Convolution Network 51

5.2.1 Approach . 52
5.2.2 Assessment of Performance . 54
5.2.3 Data Preprocessing . 55
5.2.4 Results . 56
5.2.5 Discussion . 60

5.3 Denoising Graph Autoencoder with SVM Classifer 61
5.3.1 Approach . 62
5.3.2 Assessment of Performance . 64
5.3.3 Data Prepossessing . 65
5.3.4 Results . 65

5.4 Novel Deep Graph Neural Networks . 66
5.4.1 Approach . 67
5.4.2 Results . 68
5.4.3 Conclusion . 70

6 3D Facial Expression Recognition 72
6.1 Problem Definition . 72
6.2 Data Clean . 73
6.3 Approach . 74

6.3.1 Notations and Definitions . 74
6.3.2 Preprocessing . 75
6.3.3 Weight Initialization . 75
6.3.4 SplineConv . 75
6.3.5 Batch Normalization . 76
6.3.6 Graph Coarsening . 76
6.3.7 Average Pooling . 76

6.4 Training . 77
6.4.1 Loss Function . 77
6.4.2 Optimizer . 77
6.4.3 Adaptive Learning Rate Strategy 77

vi

Table of Contents CONTENTS

6.5 Experiments . 77
6.5.1 Experiment I . 78
6.5.2 Experiment II . 79
6.5.3 Experiment III . 84
6.5.4 Conclusion . 86

7 Conclusion and Future Directions 88
7.1 Future Directions . 89

7.1.1 Bach training large-scale network with graph convolution 89
7.1.2 Differentiable and Stable Mesh Pooling Strategy 89
7.1.3 3D Generative Models . 89

A Ethics Checklist 90

List of Tables 93

List of Figures 101

Bibliography 101

vii

Chapter 1

Introduction

1.1 Overview

1.1.1 Traditional Machine Learning on Graphs and Manifolds

Significance Graphs and manifolds (Fig. 1.1) are ubiquitous data structures, employed
extensively within computer science and related fields. Social networks, molecular graph
structures, biological protein-protein networks, recommender systems, 3D computer vi-
sion, all of these domains and many more can be readily formulated as graphs or man-
ifolds, which capture interactions (i.e. edges) between individual units (i.e. nodes). As
a consequence of their ubiquity, graphs are the backbone of countless systems, allowing
relational knowledge about interacting entities to be efficiently stored and accessed [2].

Many machine learning applications seek to make predictions or discover new pat-
terns using graph-structured data as feature information. For example, one might wish
to classify the role of a protein in biological interaction networks, predict the role of a
person in a collaboration network, recommend new friends to a user in a social network,
or predict new therapeutic applications of existing drug molecules, whose structure can be
represented as a graph.

Challenges The central problem in machine learning on graphs is finding a way to in-
corporate information about graph structure into a machine learning model. For example,
in the case of link prediction in a social network, one might want to encode pairwise prop-
erties between nodes, such as relationship strength or the number of common friends. Or
in the case of node classification, one might want to cluster nodes from the information
defined on top of each node and the graph topologocial structure (See fig.). The challenge
from a machine learning perspective is that there is no straightforward way to encode this
high-dimensional, non-Euclidean information into a feature vector.

Traditional Methods To extract structural information from graphs, traditional machine
approaches often rely on summary graph statistics (e.g. degrees or clustering coefficients)
[3], kernel functions [62], or carefully engineered features to measure local neighborhood
structures [39]. However, these approaches are limited because these hand-engineered

1

Chapter 1. Introduction SECTION 1.1.

(a) Graphs (b) Manifolds

Figure 1.1: The underlying data structure of a social network or 3D shape is represented as
graphs (left) or manifolds (right).

features are inflexible (i.e. they cannot adapt during the learning process) and design-
ing these features can be a time-consuming and expensive process. This then proposed
the requirement of the highly-efficient representation learning methods on non-Euclidean
data.

1.1.2 Widespread Prosperity of Deep Learning on Euclidean Domains

Representation Learning Representation learning is a set of methods that allows a ma-
chine to be fed with raw data and to automatically discover the representations needed
for detection or classification. Deep learning methods are representation learning methods
with multiple levels of representation, obtained by composing simple but non-linear mod-
ules that each transform the representation at one level (starting with the raw input) into
a representation at a higher, slightly more abstract level. The key aspect of deep learning is
that these layers of features are not designed by human engineers: they are learned from
data using a general-purpose learning procedure.

Deep Learning Models Since the first time a convolutional network won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), one of the largest contest in object
recognition in 2012, deep learning models have gained prosperity and proven extremely
successful on a wide variety of tasks, from computer vision and acoustic modeling to nat-
ural language processing [37]. One of the key reasons for the success of deep neural
networks is their ability to leverage statistical properties of the data such as stationarity
and compositionality through local statistics, which are present in natural images, video,
and speech. These properties are exploited efficiently by Convolutional Neural Networks
(CNNs) [38]. Precisely, CNNs extract the local stationarity property of the input data or
signals by revealing local features that are shared across the data domain. These similar
features are identified with localized convolutional filters or kernels, which are learned

2

Chapter 1. 1.1. OVERVIEW

Figure 1.2: Classifying research papers in the CORA dataset with GCN [34]. Shown is the
citation graph, where each node is a paper, and an edge represents a citation. Vertex fill and
outline colors represents the predicted and groundtruth labels, respectively; ideally, the two
colors should coincide. We produce the figure with GCN [34])

from the data.

While deep learning has been proven to be powerful tools in various fields, it is not
straightforward to apply CNNs to graphs as basic operators like convolution and pooling
are not well defined on graphs. This makes such extension challenging, both theoretically
and implementation-wise.

1.1.3 Geometric Deep Learning

The term of geometric deep learning is first proposed by Bronstein et al. [6] for emerging
techniques attempting to generalize deep neural models to non-Euclidean domains such
as graphs and manifolds. The interest in this field has exploded in the past years, resulting
in numerous successful attempts to apply these methods in a broad spectrum of problems
ranging from biochemistry [17] to recommender systems [44]. In this thesis, we propose
to solve two fundamental problems lied in computational biology and 3D computer vision
with geometric deep learning.

3

Chapter 1. Introduction SECTION 1.2.

1.2 Background

In this thesis, we tackle two fundamental problems lied in computational biology and
3D computer vision communities: protein function prediction and 3D facial expression
analysis (i.e. recognition). For illustrated in Figure 1.3, two problems are closely connected
to geometric deep learning. Next, we give a briefly overview of each problem and highlight
the corresponding challenges.

Figure 1.3: Two problems towards geometric deep learning.

1.2.1 Protein Function Prediction

Over the past a few years, an abundance of large-scale protein interaction networks (see
Figure 1.4) was produced by high-throughput experimental methods. These networks
serve as a representation of the evidence for similar function within a group of proteins,
where nodes represent proteins and are linked to each other by edges representing evi-
dence of shared function. Developing methods for protein function prediction allows us
to maximize the utility of functional annotations derived from costly and time consuming
protein function characterization and large-scale genomics experiments.

Today, a common challenge for network-based methods is how to capture underly-
ing feature representations from complex and highly non-linear topological structures.
GeneMANIA (Mostafavi et al. [46], Mostafavi and Morris [45] (2008, 2012)) is a widely
used semi-supervised network-based method that first integrates kernels of different net-
work types into a single kernel by solving a constrained linear regression problem; then,
it applies Gaussian label propagation on the resulting kernel to make label predictions.
However, as pointed out by Cho et al. [11], this method suffer from the information loss
incurred when combining all the network types into a single network. Recently, Cho et al.
[11] (2016) proposed Mashup, a network integration framework, to address the challenge
of fusing noisy and incomplete interaction networks. Mashup takes as input a collection

4

Chapter 1. 1.2. BACKGROUND

of protein interaction networks and applies a matrix factorization-based technique to con-
struct compact low-dimensional vector representation of proteins that best explains their
wiring patterns across all networks. These vectors are then fed into a support vector ma-
chine (SVM) classifier to predict functional labels of proteins. The key step in Mashup is
the feature learning step that constructs informative features that have been shown to be
useful in multiple scenarios including highly accurate protein function prediction. deepNF
(Gligorijević et al. [19] (2017)) is the first method based on a multimodal deep autoen-
coder (MDA) to extract compact, low-dimensional feature representations from traning
MDA with different heterogeneous protein interaction networks. The learned feature is
then used to train SVM classifer to perform the task of multilable semi-supervised classifi-
cation. They argue that features learned by using MDA lead to substantial improvements in
protein function prediction accuracy. deepNF outperforms the previous benchmarks from
GeneMANIA and Mashup on the dataset STRING human and yeast in terms of molecular
function (MF), biological process (BP), cellular component (CC) GO terms.

Figure 1.4: An example protein interaction network, produced through the STRING web re-
source. Patterns of protein interactions within networks are used to infer function. Here,
products of the bacterial trp genes coding for tryptophan synthase are shown to interact with
themselves and other, related proteins.

1.2.2 3D Facial Expression Recognition

Facial expression is the most cogent, naturally preeminent means for humans to commu-
nicate emotions, to clarify and give emphasis, to express intentions and, more generally,

5

https://string-db.org/
https://string-db.org/

Chapter 1. Introduction SECTION 1.3.

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 1.5: Examples of 6 three-dimensional facial expressions of one participant in the 4DFAB
database.

to regulate interactions with the environment and other people [1]. These facts high-
light the importance of automatic facial behaviour analysis, including facial expression
of emotion and facial action unit (AU) recognition. It can be regarded as the essence of
next-generation computing systems as it plays a crucial role in affective computing tech-
nologies (i.e. proactive and affective user interfaces), learner-adaptive tutoring systems,
patient-profiled personal well-being technologies, etc [48].

In the past, the majority of work conducted in this area involves 2D images, despite
the problems this presents due to inherent pose and illumination variations. In order to
deal with these problems, 3D face are increasingly used in expression anaylsis because
all the data is in the form of coordinates, containing much more information than a flat
image, but the progress in this field was restrained by the lack of high resolution 3D facial
expression database.

Recently, the iBug group in Imperial College London published high-resolution 3D face
dataset 4DFAB (Cheng et al. [10] (2017)), which includes 180 participants on 4 differ-
ent recording sessions and each participants performs 4 to 6 basic expressions (i.e. anger,
disgust, fear, happiness, sadness and surprise) (see Figure 1.5). They reported the cur-
rent baseline performance of 3D facial expression recognition on 4DFAB database with a
recognition rate of 70.27% Session 1, 69.02%, 66.91% and 68.89% in Session 2, 3 and 4
experiments respectively. The method they proposed requires to first extracting the main
face regions (covering eyes, mouth, cheeks and nose) based on 79 facial landmarks. The
region was further divided into non-overlapping blocks, for which Histogram of Oriented
Normal Vectors (HONV) [60] were computed. After this, PCA and LDA were used for
dimensionality reduction, a multi-class SVM [9] was employed to classify expressions.

6

Chapter 1. 1.3. THESIS STATEMENT

1.3 Thesis Statement

This thesis seeks to address the multifaceted challenges arising in computational biology
(e.g. protein function prediction) and 3D facial expression analysis (e.g. recognition). In
particular, this thesis provides evidence to support the following statement:

Thesis Statement: With appropriate architectures and algorithm design, geometric deep
learning methods are capable of providing general solutions to graph- and mesh- structured
data in terms of various tasks, e.g. multi-label/multi-class semi-supervised node classification,
3d shape recognition.

We believe that the architectures and the methods developed in this thesis will enable
more people to take advantage of the power of geometric deep learning to resolve prob-
lems in different fields where the underlying data structure is graphs or manifolds. All the
codes developed when completing this thesis will be made publicity available.

1.4 Contributions

Our major contributions in this thesis are summarised below:

• We present a review of the most recent spectral and spatial graph convolution meth-
ods with detailed analysis of designing intuitions behind those methods. Addition-
ally, we evaluate and compare those methods on two popular tasks, node feature
classification and shape correspondence.

• We propose a graph autoencoder network incorporated with SVM classifier. The ar-
chitecture is capable of learning a compact, low-dimensional feature representation
in an unsupervised way. The extracted latent featuer can be used to train a SVM
classifier to solve semi-supervised multi-label classification problem.

• We introduce a novel deep graph neural network, which allows to learn graph topo-
logical structure without providing any hand-crafted node feature. Our model achieved
the state-of-the-art performance on BIOGRID human, mouse and yeast dataset. We
argue that our method can be applied to any task if the underlying data can be con-
structed into a graph structure.

• We provide a fast method based on continuous B-spline kernels on the problem of
3D facial expression recognition, which allows for end-to-end training without us-
ing hand-crafted feature descriptors. Our method outperforms the current baseline
results on 4DFAB dataset.

• All the codes developed when completing this thesis will be made publicly available.
Currently, we provide the GPU implementation based on python3 on top of Pytorch,
a deep learning framework.

7

https://pytorch.org/

Chapter 2

Preliminaries on Deep Learning from
Euclidean Domains

In this chapter we provide some background information of deep learning that are the basic
knowledge to understand our models developed on non-Euclidean domains. We start with
giving a brief review of Convolutional Neural Networks (CNNs), including convolutional,
pooling, activation and fully connected layer. We then discuss the Autoencoder (AE).

2.1 Convolutional Neural Networks

A CNN architecture is formed by a stack of distinct layers that transform the input volume
into an output volume (e.g. holding the class scores) through a differentiable function
(Figure (2.1)). A few distinct types of layers (i.e. convolution, pooling, fully connected
layer) are commonly used. We discuss them further below:

Figure 2.1: Typical convolutional neural network architecture [37] used in computer vision
applications.

8

Chapter 2. 2.1. CONVOLUTIONAL NEURAL NETWORKS

2.1.1 Convolutional Layer

Overview and Intuition

The convolutional layer is the core building block of a CNN. The layer’s parameters consist
of a set of learnable filters (or kernels), which have a small receptive field (see Figure
2.2), but extend through the full depth of the input volume. During the forward pass,
each filter is convolved across the width and height of the input volume, computing the
dot product between the entries of the filter and the input and producing a 2-dimensional
activation map of that filter. As a result, the network learns filters that activate when it
detects some specific type of feature at some spatial position in the input.

Stacking the activation maps for all filters along the depth dimension forms the full
output volume of the convolution layer. Every entry in the output volume can thus also be
interpreted as an output of a neuron that looks at a small region in the input and shares
parameters with neurons in the same activation map.

For each convolutional layer of the form g = CΓ(f), acting on a p-dimensional input
f(x) = (f1(x), . . . , fp(x)) by applying a bank of filters Γ = (γl,l′), l = 1, . . . , p, l′ = 1, . . . , q
and point-wise non-linear activation function ξ,

gl′(x) = ξ(

p∑
l=1

(fl ∗ γl,l′)(x)) (2.1)

producing a q-dimensional output g(x) = (g1(x), . . . , gq(x)) often referred to as the feature
maps. For compact support filters, the space complexity of parameters in per filter is O(1)
(independent of input image size n) and the computational complexity is O(n).

Local connectivity

When dealing with high-dimensional inputs such as images, it is impractical to connect
neurons to all neurons in the previous volume because such a network architecture does
not take the spatial structure of the data into account. Convolutional networks exploit
spatially local correlation by enforcing a local connectivity pattern between neurons
of adjacent layers: each neuron is connected to only a small region of the input volume.
The extent of this connectivity is a hyperparameter called the receptive field of the neuron
(see Figure 2.2). The connections are local in space (along width and height), but always
extend along the entire depth of the input volume. Such an architecture ensures that the
learnt filters produce the strongest response to a spatially local input pattern.

Parameter sharing

A parameter sharing scheme is used in convolutional layers to control the number of
free parameters. It relies on one reasonable assumption: That if a patch feature is useful
to compute at some spatial position, then it should also be useful to compute at other
positions. In other words, denoting a single 2-dimensional slice of depth as a depth slice,
we constrain the neurons in each depth slice to use the same weights and bias.

Since all neurons in a single depth slice share the same parameters, then the forward
pass in each depth slice of the convolutional layer can be computed as a convolution of

9

Chapter 2. Preliminaries on Deep Learning from Euclidean Domains SECTION 2.1.

Figure 2.2: Neurons of a convolutional layer (blue), connected to their receptive field (red)

the neuron’s weights with the input volume. Therefore, it is common to refer to the sets
of weights as a filter (or a kernel), which is convolved with the input. The result of this
convolution is an activation map, and the set of activation maps for each different filter
are stacked together along the depth dimension to produce the output volume. Parameter
sharing contributes to the translation invariance of the CNN architecture. Thanks to
this property, the linear operator at each layer have a constant number of parameters,
independent of the input size n.

2.1.2 Pooling Layer

Another important concept of CNNs is pooling, which is a form of non-linear down-
sampling. There are several non-linear functions to implement pooling among which max
pooling is the most common. It partitions the input image into a set of non-overlapping
rectangles and, for each such sub-region, outputs the maximum. The intuition is that
the exact location of a feature is less important than its rough location relative to other
features. The pooling layer serves to progressively reduce the spatial size of the represen-
tation, to reduce the number of parameters and amount of computation in the network,
and hence to also control overfitting. It is common to periodically insert a pooling layer
between successive convolutional layers in a CNN architecture. The pooling operation
provides another form of translation invariance.

The pooling layer operates independently on every depth slice of the input and resizes
it spatially. The most common form (see Figure 2.3) is a pooling layer with filters of size
2 × 2 applied with a stride of 2 downsamples at every depth slice in the input by 2 along
both width and height, discarding 75% of the activations. In this case, every max operation
is over 4 numbers. The depth dimension remains unchanged.

General Pooling

Generally, a downsampling/subsampling or pooling layer can be defined as

gl′(x) = P ({fl(x′) : x′ ∈ N (x)}), l = 1, . . . , p (2.2)

10

Chapter 2. 2.1. CONVOLUTIONAL NEURAL NETWORKS

where N (x) ⊂ V is a neighborhood around x and P is a permutation-invariant function
such as a Lp-norm (i.e. the choice of p = 1, 2 or ∞ results in average-, energy-, or max-
pooling). Average pooling was often used historically but has recently fallen out of favor
compared to the max pooling operation, which has been shown to work better in practice
[52].

Due to the aggressive reduction in the size of the representation, the trend is towards
using smaller filters [22] or discarding the pooling layer altogether [58].

Figure 2.3: Pooling layer downsamples the volume spatially, independently in each depth slice
of the input volume. Left: In this example, the input volume of size [224x224x64] is pooled
with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume
depth is preserved. Right: The most common downsampling operation is max, giving rise to
max pooling, here shown with a stride of 2. That is, each max is taken over 4 numbers (little
2x2 square).

2.1.3 Activation Layer

Here we mainly introduce the activation functions we used in our models, i.e. ReLU, Leaky
ReLU, PReLU, ELU, Sigmoid, Tanh activation function.

ReLU (Figure 2.4(a)) is the abbreviation of Rectified Linear Units. This layer applies
the non-saturating activation function. It increases the nonlinear properties of the decision
function and of the overall network without affecting the receptive fields of the convolution
layer.

ReLU(x) = max(0, x) (2.3)

LeakyReLU (Figure 2.4(b)) allows a small, positive gradient when the unit is not active.

LeakyReLU(x) =

 x if x > 0

0.01x otherwise
(2.4)

Parametric ReLU (PReLU) (Figure 2.4(c)) takes this idea further by making the coef-
ficient of leakage into a parameter that is learned along with the other neural network
parameters [24].

PReLU(x) =

 x if x > 0

ax otherwise
(2.5)

11

Chapter 2. Preliminaries on Deep Learning from Euclidean Domains SECTION 2.1.

(a) Relu (b) LeakyReLU (c) PReLU

(d) ELU (e) Sigmoid (f) Tanh

Figure 2.4: Examples of 6 activation functions we used in the thesis.

Exponential linear unit (ELU) (Figure 2.4(d)) tries to make the mean activations closer
to zero which speeds up learning. It has been shown that ELUs can obtain higher classifi-
cation accuracy than ReLUs [13].

ELU(x) =

 x if x > 0

a(ex − 1) otherwise
(2.6)

a is a hyper-parameter to be tuned and a ≥ 0 is a constraint.
Sigmoid activation function (Figure 2.4(e)) refers to the special case of the logistic

function shown in the Figure and defined by the equation (2.7). Sigmoid functions have
domain of all real numbers, with return value monotonically increasing most often from 0
to 1. This is the property we take use of in some cases where we need the output in this
domain.

Sigmoid(x) =
1

1 + e−x
=

ex

ex + 1
(2.7)

Hyperbolic tangent (Tanh) (Figure 2.4(f)) is also used sometimes, defined as:

Tanh(x) =
ex − e−x

ex + e−x
(2.8)

2.1.4 Fully Connected Layer

Finally, after several convolutional and max pooling layers, the high-level reasoning in the
neural network is done via fully connected layers. Neurons in a fully connected layer have

12

Chapter 2. 2.2. AUTOENCODER

connections to all activations in the previous layer, as seen in regular neural networks.
Their activations can hence be computed with a matrix multiplication followed by a bias
offset.

2.2 Autoencoder

Typically, the aim of an autoencoder is to learn a representation (encoding) for a set of
data, for the purpose of dimensionality reduction. deepNF used this property to extract
the compact, low dimensional feature representation of heterogeneous protein interaction
networks. An alternative use is as a generative model: for example, if a system is manu-
ally fed the codes it has learned for ”cat” and ”flying”, it may attempt to generate an image
of a flying cat, even if it has never seen a flying cat before [33].

2.2.1 Structure

An autoencoder always consists of two parts, the encoder and the decoder, which can be
defined as transitions φ and ψ. In the most of cases, the objective function is defined as L2
Loss, such that:

φ : X → F
ψ : F → X
φ, ψ = arg min ‖X − (ψ ◦ φ)X‖2 (2.9)

where X represents the input.
In the simplest case (Figure 2.5), where there is one hidden layer, the encoder stage of

an autoencoder takes the input x ∈ Rd = X and maps it to z ∈ Rp = F :

z = σ(Wx + b) (2.10)

The image z is usually referred to as latent representation. Here, σ is an element-wise
activation function such as a sigmoid function (Figure 2.4(e)) or a ReLU (Figure 2.4(a)).
W is a weight matrix and b is a bias vector. After that, the decoder stage of the autoencoder
maps z to the reconstruction x′ of the same shape as x:

x′ = σ′(W′z + b′) (2.11)

where σ′,W′ and b′ for the decoder may differ in general from the corresponding σ,W,
and b for the encoder, depending on the design of the autoencoder.

Autoencoders are also trained to minimise reconstruction errors (such as squared er-
rors):

L(x,x′) = ‖x− x′‖2 = ‖x− σ′(W′(σ(Wx + b)) + b′)‖2 (2.12)

where x is usually averaged over some input training set.
If the feature space F has lower dimensionality than the input space X , then the feature

vector φ(x) can be regarded as a compressed representation of the input x.

13

Chapter 2. Preliminaries on Deep Learning from Euclidean Domains SECTION 2.2.

Figure 2.5: The structure of a standard autoencoder.

2.2.2 Denoising Autoencoder

Denoising autoencoder is a variation of standard autoencoders. Since the underlying ar-
chitecture of deepNF is based on denoising autoencoder, we give a simple introduction of
this structure.

Basically, denoising autoencoders take a partially corrupted input whilst training to
recover the original undistorted input. This technique has been introduced with a specific
approach to good representation [61]. A good representation is one that can be obtained
robustly from a corrupted input and that will be useful for recovering the corresponding
clean input. This definition contains the following implicit assumptions:

• The higher level representations are relatively stable and robust to the corruption of
the input.

• It is necessary to extract features that are useful for representation of the input dis-
tribution.

To train an autoencoder to denoise data, it is necessary to perform preliminary stochas-
tic mapping x → x̃ in order to corrupt the data and use x̃ as input for a normal autoen-
coder, with the only exception being that the loss should be still computed for the initial
input L(x, x̃′) instead of L(x̃, x̃′).

14

Chapter 3

Preliminaries on Graph Theory

In this chapter, we review some basic definitions and notations from spectral graph theory,
with a focus on how it enables us to extend many of the important mathematical ideas and
intuitions from classical Fourier Analysis to the graph setting, which is considered as the
foundation to understand the designing intuition of spectral graph convolution we would
introduce in the next chapter. We also introduce graph coarsening theory, a key ingredient
of graph subsampling or pooling operation. This makes it possible for the model to learn
hierarchical 3D shape representations and also accelerate the training process.

3.1 Basic Defintions and Notations

In this thesis, We are interested in analyzing signals defined on an undirected, connected,
weighted graph G = (V , E ,W), which consists of a finite set of vertices V with |V| = n, a set
of edges E , and a weighted adjacency matrix W. If there is an edge e = (i, j) connecting
vertices i and j, the entry Wij (or aij) represents the weight of the edge; otherwise, Wij =
0. In some cases if only provided the adjacency matrix A, the entry Wij = 1 if vertex i and
j are connected; otherwise, Wij = 0.

When the edge weights are not naturally defined by an application, one common way
to define the weight of an edge connecting vertices i and j is via a thresholded Gaussian
kernel weighting function:

Wij =

 exp(− [dist(i,j)]2

2θ2
) if dist(i, j) ≤ K

0 otherwise
(3.1)

for some parameters θ andK. In (3.1), dist(i, j) may represent a physical distance between
vertices i and j, or the Euclidean distance between two feature vectors describing i and j,
the latter of which is especially common in graph-based semi-supervised learning methods.
A second common method is to connect each vertex to its k-nearest neighbors based on
the physical or feature space distances. For other graph construction methods, see, e.g.,
[21].

A signal or vertex function f : V → R defined on the vertices of the graph may be
represented as a vector f ∈ RN , where the ith component of the vector f represents the
function value at the ith vertex in V. The graph signal in Figure 3.1 is one example.

15

Chapter 3. Preliminaries on Graph Theory SECTION 3.2.

Figure 3.1: A random positive graph signal on the vertices of the Petersen graph. The height
of each blue bar represents the signal value at the vertex where the bar originates.

3.2 Spectral Graph Theory

3.2.1 Graph Laplacian

Definition 3.2.1 (non-normalized graph Laplacian). The non-normalized graph Laplacian,
also called the combinatorial graph Laplacian, is defined as ∆ = D−W, where the degree
matrix D = diag(

∑
jWij). The graph Laplacian is a difference operator, as, for any signal

f ∈ RN , it satisfies
(∆f)(i) =

∑
j∈Ni

Wij[f(i)− f(j)],

where the neighborhood Ni is the set of vertices connected to vertex i by an edge. More
generally, we denote by N (i, k) the set of vertices connected to vertex i by a path of k or
fewer edges.

Because the graph Laplacian ∆ is a real symmetric matrix, it has a complete set
of orthogonal eigenvecotrs, which we denote by Φ = (φ1, . . . , φn)1. These eigenvec-
tors have associated real, non-negative eigenvalues λ1, . . . , λn, satisfying ∆φi = λiφi, for
i = 1, 2, . . . , N . Zero appears as an eigenvalue with multiplicity equal to the number of con-
nected components of the graph [12], and thus, since we consider connected graphs, we
assume the graph Laplacian eigenvalues are ordered as 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λN := λmax.

Definition 3.2.2 (normalized graph Laplacian). By normalizing each weight Wij by a fac-
tor of 1√

didj
, where di represents the degree of vertex i (i.e. di =

∑
jWij), we then get the

normalized graph Laplacian defined as ∆̃ = D−1/2∆D−1/2 = I−D−1/2WD−1/2.

The eigenvalues λ̃1, . . . , λ̃N of the normalized graph Laplacian of a connected graph G
satisfy

0 ≤ λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃max ≤ 2,

1Note that there is not necessarily a unique set of graph Laplacian eigenvectors, but we assume through-
out that a set of eigenvectors is chosen and fixed.

16

Chapter 3. 3.2. SPECTRAL GRAPH THEORY

with λ̃max = 2 if and only if G is bipartite; i.e. the set of vertices V can be partitioned into
two subsets V1 and V2 such that every edge e ∈ E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors by Φ̃ = (φ̃1, . . . , φ̃N).

As discussed in detail in the next section, both the normalized and non-normalized
graph Laplacian eigenvectors can be used as filtering basis. However, from the current
trend, normalized graph Laplacian is more widely used as it has the nice property that its
spectrum is always contained in the interval [0, 2] and, for bipartite graphs, the spectral
folding phenomenon [47] can be exploited.

Definition 3.2.3 (Eigendecomposition of graph Laplacian). Since both normalized and
non-normalized Laplacian are symmetric and positive semi-definite matrices, they admit
an eigendecomposition ∆ = ΦΛΦT, where the diagonal matrix Λ = diag(λ1, . . . , λN).

3.2.2 Graph Fourier Transform

Definition 3.2.4 (classical Fourier transform). The classical Fourier transform

f̂(ξ) :=< f, e2πiξt >=

∫
R
f(t)e−2πiξtdt

is the expansion of a function f in terms of the complex exponentials, which are the
eigenfunctions of the one-dimensional Laplace operator:

−∆(e2πiξt) = − ∂2

∂t2
(e2πiξt) = (2πξ)2(e2πiξt) (3.2)

Definition 3.2.5 (graph Fourier transform). we can define the graph Fourier transform f̂
of any function f ∈ R on the vertices of G as the expansion of f in terms of the eigenvectors
of the graph Laplacian:

f̂(λl) :=< f , φl >=
N∑
i=1

f(i)φ∗l (i) (3.3)

In a matrix-vector notation,

f̂ = ΦTf (3.4)

Definition 3.2.6 (interse graph Fourier transform). The inverse graph Fourier transform is
then given by

f(i) =
N∑
l=1

f̂(λi)φl(i) (3.5)

and the corresponding matrix-vector notation,

f = Φ f̂ (3.6)

17

Chapter 3. Preliminaries on Graph Theory SECTION 3.2.

(a) spatial domain (b) spectral domain

Figure 3.2: Equivalent representations of a graph in the spatial and the spectral domains. In
this case, the signal is a heat kernel which is actually defined directly in the gragh spectral
domain by ĝ(λl) = e−5λl The signal plotted in (a) is then determined by taking an inverse
grapgh Fourier transform (3.6) of ĝ.

Interpretation

In classical Fourier analysis, the eigenvalues {(2πξ)2}ξ∈R in (3.2) carry a specific notion
of frequency: for ξ close to zero (low frequencies), the associated complex expo-
nential eigenfunctions are smooth, slowly oscillating functions, whereas for ξ far from
zero (high frequencies), the associated complex exponential eigenfunctions oscillate
much more rapidly. In the graph setting, the graph Laplacian eigenvalues and eigenvec-
tors provide a similar notion of frequency. For connected graphs, the Laplacian eigenvec-
tor φ1 associated with the eigenvalue 0 is constant and equal to 1√

N
at each vertex. The

graph Laplacian eigenvectors associated with low frequencies λl vary slowly across
the graph; i.e., if two vertices are connected by an edge with a large weight, the values
of the eigenvector at those locations are likely to be similar. The eigenvectors associated
with larger eigenvalues oscillate more rapidly and are more likely to have dissimilar
values on vertices connected by an edge with high weight.

The graph Fourier transform (3.4) and its inverse (3.6) give us a way to equivalently
represent a signal in two different domains: the spatial domain and the graph spectral
domain. While we often start with a signal g in the spatial domain, it may also be useful to
define a signal ĝ directly in the graph spectral domain. We refer to such signals as kernels.
In Figures 6.13(a) and 6.13(c), one such signal, a heat kernel, is shown in both domains.
Analogously to the classical analog case, the graph Fourier coefficients of a smooth signal
such as the one shown in Figure 3.2 decay rapidly. Such signals are compressible as they
can be closely approximated by just a few graph Fourier coefficients (see, e.g. [14, 63, 64]
for ways to exploit this compressibility).

3.2.3 Discrete Calculus and Signal Smoothness

When we analyze signals, it is important to emphasize that properties such as smoothness
are with respect to the intrinsic structure of the data domain, which in our context is the
weighted grapgh (i.e. W).

18

Chapter 3. 3.2. SPECTRAL GRAPH THEORY

To add mathematical precision to the notion of smoothness with respect to the intrin-
sic structure of the underlying graph, we briefly present some of the discrete differential
operators defined in [56] 2.

Definition 3.2.7 (edge derivative). The edge derivative of a signal f with respect to edge
e = (i, j) at vertex i is defined as

∂f

∂e

∣∣∣∣
i

:=
√
Wij[f(j)− f(i)]

Definition 3.2.8 (graph gradient). The graph gradient of f at vertex i is the vector

∇if :=

[{
∂f

∂e

∣∣∣∣
i

}
e∈E s.t e=(i,j) for some j∈V

]
Definition 3.2.9 (local variation). We can then define local variation at vertex i.

||∇if ||2 : =

 ∑
e∈E s.t e=(i,j) for some j∈V

(
∂f

∂e

∣∣∣∣
i

)2
 1

2

=

[∑
j∈Ni

Wij[f(j)− f(i)]2

] 1
2

provides a measure of local smoothness of f around vertex i, as it is small when the
function f has similar values at i and all neighboring vertices of i.

Definition 3.2.10 (discrete p-Dirichlet form of f). For notions for global smoothness, the
notion of discrete p-Dirichlet form of f is defined as

Sp(f) :=
1

p

∑
i∈V

||∇if ||p2 =
1

p

∑
i∈V

[∑
j∈Ni

Wij[f(j)− f(i)]2

] p
2

(3.7)

When p = 1, S1(f) is the total variation of the signal with respect to the graph. When
p = 2, we have

S2(f) =
1

2

∑
i∈V

||∇if ||p2 =
1

p

∑
i∈V

∑
j∈Ni

Wij[f(j)− f(i)]2

=
∑
i,j∈E

Wij[f(j)− f(i)]2

= fT∆f (3.8)

2Note that the names of many of the discrete calculus operators correspond to the analogous operators in
the continuous setting. In some problems, the weighted graph arises from a discrete sampling of a smooth
manifold. In that situation, the discrete differential operators may converge - possibly under additional
assumptions - to their namesake continuous operators as the density of the sampling increases.

19

Chapter 3. Preliminaries on Graph Theory SECTION 3.2.

S2(f) is also known as the graph Laplacian quadratic form [57].
Returning to the graph Laplacian eigenvalues and eigenvecotrs, the Courant-Fischer

Theorem [28] tells us they can also be defined iteratively via the Rayleigh quotient as

λ1 = min
f∈RN
||f ||2=1

{fT∆f} (3.9)

and λl = min
f∈RN
||f ||2=1

f⊥Span(φ1,...,φN)

{fT∆f}, l = 2, 3, . . . , N (3.10)

where the eigenvector φl is the minimizer of the lth problem. From (3.8) and (3.9), we
see why φ1 is constant for connected graphs. Equation (3.10) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are smoother, and provides
another interpretation for why the graph Laplacian spectrum carries a notion of frequency.

In summary, the connectivity of the underlying graph is encoded in the graph Laplacian,
which is used to define both a graph Fourier transform (via the graph Laplacian eigenvec-
tors) and different notions of smoothness.

3.2.4 Filtering

We start by extending the notion of frequency filtering to the graph setting, and then
discuss localized filtering in the vertex (spatial) domain.

Frequency Filtering

In classical signal processing, frequency filtering is the process of representing an input
signal as a linear combination of complex exponentials, and amplifying or attenuating the
contributions of some of the component complex exponentials:

f̂out(ξ) = f̂in(ξ)ĥ(ξ) (3.11)

where ĥ(ξ) is the transfer function of the filter. Taking an inverse Fourier transform of
(3.11), multiplication in the Fourier domain corresponds to convolution in the time do-
main:

fout(t) =

∫
R
f̂in(ξ)ĥ(ξ)e2πiξtdξ (3.12)

=

∫
R
fin(τ)h(t− τ)dτ := (fin ∗ h)(t) (3.13)

Definition 3.2.11 (graph spectral filtering). Once we fix a graph spectral representation,
and thus our notion of a graph Fourier transform (in this section, we use the eigenvectors of
Λ, but Λ̃ can also be used), we can directly generalize (3.11) to define frequency filtering,
or graph spectral filtering, as

f̂out(λl) = f̂in(λl)ĥ(λl) (3.14)

20

Chapter 3. 3.2. SPECTRAL GRAPH THEORY

or, equivalently, taking an inverse graph Fourier transform,

fout(i) =
N∑
l=1

f̂in(λl)ĥ(λl)φl(i) (3.15)

By using the matrix notation, we can also write (3.14) and (3.15) as fout = ĥ(∆)fin, where

ĥ(∆) := Φ


ĥ(λ1) · · · 0

...

0 · · · ĥ(λN)

ΦT (3.16)

Filtering in the Vertex Domain

To filter a signal in the vertex domain, we simply write the output fout(i) at vertex i as a
linear combination of the components of the input signal at vertices within a K-hop local
neighborhood of vertex i:

fout(i) = bi,ifin(i) +
∑

j∈N (i,K)

bi,jfin(j) (3.17)

for some constants {bi,j}i,j∈V . Equation (3.17) just says that filtering in the vertex domain
is a localized linear transform.

Relation of filtering in the graph spectral domain and the vertex domain

We now briefly relate filtering in the graph spectral domain (frequency filtering) to filtering
in the vertex domain. When the frequency filter in (3.14) is an order K polynomial ĥ(λl) =∑K

k=0 akλ
k
l for some constants {ak}k=0,1,...,K , we can also interpret the filtering equation

(3.14) in the vertex domain. From (3.15), we have

fout(i) =
N∑
l=1

f̂in(λl)ĥ(λl)φl(i)

=
N∑
j=1

fin(j)
K∑
k=0

ak

N∑
l=1

λkl φ
∗
l (j)φl(i)

=
N∑
j=1

fin(j)
K∑
k=0

ak(∆
k)i,j (3.18)

Yet, (∆k)i,j = 0 when the shortest-path distance dG(i, j) between vertices i and j ((i.e.
the minimum number of edges comprising any path connecting i and j) is greater than k
[23]. Therefore, we can write (3.18) exactly as in (3.17), with the constants defined as

bi,j =
K∑

k=dG(i,j)

ak(∆
k)i,j

21

Chapter 3. Preliminaries on Graph Theory SECTION 3.2.

So when the frequency filter is an order K polynomial, the frequency filtered signal
at vertex i, fout(i), is a linear nation of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property can be quite useful when
relating the smoothness of a filtering kernel to the localization of filtered signals in the
vertex domain. We will see how this property was used to construct spatial localized filter
in next chapter.

3.2.5 Graph Convolution

We cannot directly generalize the definition 3.13 of a convolution product to the graph
setting, because of the term h(tτ). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex exponentials in (3.12) with the
graph Laplacian eigenvectors [55].

Definition 3.2.12 (Graph Convolution). Graph convolution is defined with the graph
Laplacian eigenvectors as:

(f ∗ h)(i) :=
N∑
l=1

f̂(λl)ĥ(λl)φl(i) (3.19)

Or in a matrix notation:

f ∗ h = Φdiag(ĥ(λ1), . . . , ĥ(λN))ΦTf

= ĥ(∆)f (3.20)

The matrix notation of graph convolution is what we most used in the spectral graph
CNNs. We can notice that filter coefficients depend on Laplacian eigenvectors φ1, . . . , φN ,
which property makes the filter learned in one graph difficult to transfer to another graph.
We can also find that the computation complexity is O(n2) rather than O(n) in classical
Convolution in spatial domain. We will elaborate these in detail in the next chapter.

3.2.6 Translation

Convolution in spatial domain have the good property of translation invariance. We then
inspect this property in graphs. The classical translation operator is defined through the
change of variable (Tvf)(t) := f(t− v), which, as discussed earlier, we cannot generalized
directly to graph setting. However, we can also view the classical translation operator Tv
as a convolution with a delta centred at v; i.e. (Tvf)(t) = (f ∗ δv)(t) in the weak sense.
Thus, one way to define a generalized translation operator TN : RN → RN is via generalized
convolution with a delta centered at vertex n [23, 55].

Definition 3.2.13 (generalized translation). As discussed above, we can then define gen-
eralized translation operator:

(Tng)(i) :=
√
N(g ∗ δn)(i) =

√
N

N∑
l=1

ĝ(λl)φ
∗
l (n)φl(i) (3.21)

22

Chapter 3. 3.3. GRAPH COARSENING

where

δn(i) =

 1 if i = n

0 otherwise
(3.22)

A few remarks about the generalized translation (3.21) are in order:

1. We do not usually view it as translating a signal g defined in the vertex domain, but
rather as a kernelized operator acting on a kernel ĝ(·) defined directly in the graph
spectral domain.

2. The normalizing constant
√
N in (3.21) ensures that the translation operator pre-

serves the mean of a signal.

3. The smoothness of the kernel ĝ(·) controls the localization of Tng around the centre
vertex n; that is, the magnitude (Tng)(i) of the translated kernel at vertex i decays
as the distance between i and n increases [23]. This property can be seen in Figure
3.3, where we translate a heat kernel around to different locations of the Minnesota
graph.

4. Unlike the classical translation operator, the generalized translation operator (3.21)
is not generally an isometric operator (||Tng||2 6= ||g||2), due to the possible localiza-
tion of the graph Laplacian eigenvectors (φl(i) > 1√

N
).

Figure 3.3: The translated signals (a) T100g, (b) T200g, and (c) T2000g, where g is the heat
kernel shown in Figures 6.13(a) and 6.13(c)

3.3 Graph Coarsening

We recall the concept of pooling in classical CNNs discussed in Section 2.1.2. Basically,
the pooling layer serves three main purposes: 1) By having less spatial information we can
gain computation performance; 2) Less spatial information also means less parameters, so
less chance to overfitting; 3) we can get some invariance to global geometric deformations.
Hence, we also want to find pooling methods operating on graphs that preserve properties
lied in classical CNNs.

Typically, the process of transforming a given graph G = {V , E ,W} into a coarser
graph Greduced = {Vreduced, Ereduced,W}with fewer vertices and edges, while also preserving

23

Chapter 3. Preliminaries on Graph Theory SECTION 3.3.

intrinsic geometric structures, is often referred to as graph coarsening or coarse-graining
[36]. From this process, we can find grouped vertices and manage pooling operations on
that.

Graph clustering is an important problem with many applications, and a number of
different algorithms and methods have emerged over the years. Spectral methods have
been used effectively for solving a number of graph clustering objectives, including ratio
cut [8] and normalized cut [54]. Such an approach has been useful in many areas, such
as circuit layout [8] and image segmentation [54]. However, such spectral methods that
compute k eigenvectors require O(nk) storage, where n is the number of data points and k
is the number of clusters, is inefficient for large-scale tasks. We introduce a highly efficient
algorithm, called Graclus [16], which is used for graph clustering. We should stress that
the goal of pooling is to reduce the graph size, and there is no need to perform formal
clustering stage. It is enough If the graph size can be reduced in some reasonable way,
this is why we only perform graph coarsening. In typical clustering problems, people do
graph coarsening in the first stage to obtain a smaller graph and then classify a smaller
set of vertices. To sum up, we would focus on the first stage – graph coarsening of the
Graclus algorithm

Multi-level Graclus Algorithm

The framework of Graclus algorithm is similar to that of Karypis and Kumar [30], a popular
multi-level graph clustering algorithm for optimizing the Kernighan-Lin objective. Figure
3.4 provides a graphical overview of the multilevel framework. It includes three phases:
coarsening, base clustering, and refinement. We recommend readers who are interested
in the whole algorithm procedures to [16]. Below we describe the coarsening phase of the
framework.

Figure 3.4: Overview of the multi-level algorithm (for k = 2).

24

Chapter 3. 3.3. GRAPH COARSENING

Coarsening Phase Starting with the initial graph G0, the coarsening phase repeatedly
transforms the graph into smaller and smaller graphs G1,G2, . . . ,Gm such that |V0| > |V1| >
. . . > |Vm|. To coarsen a graph from Gi to Gi+1, sets of nodes in Gi are combined to form
supernodes in Gi+1. When combining a set of nodes into a single supernode, the edge
weights out of the supernode are taken to be the sum of the edge weights out of the
original nodes.

The coarsening works as follows: given a graph, start with all nodes unmarked. Visit
each vertex in a random order. For each vertex x, if x is not marked, merge x with the un-
marked vertex y that maximizes (3.23) among all edges between x and unmarked vertices.
Then mark x and y. If all neighbors of x have been marked, mark x and do not merge it
with any vertex. Once all vertices are marked, the coarsening for this level is compete.

max Wx,y

(
1

dx
+

1

dy

)
(3.23)

Wx,y corresponds to the edge weight between vertices x and y and dx, dy are the vertex
degree of x and y, respectively.

This is a very fast coarsening scheme which divides the number of nodes by approxi-
mately two from one level to the next coarser level.

25

Chapter 4

Spectral and Spatial Graph Convolutions
and Evaluation

In this chapter, we discuss geometric deep learning methods from both spectral and spatial
perspective, where the goal is to apply deep learning on graph- or mesh- structured data
instead of regular grids (i.e. images). We begin with defining general spectral Graph CNNs
(sGCNNs) and general spatial Graph CNNs, and argue that most of the well-known meth-
ods in this field (e.g. Bruna et al. [7], Henaff et al. [26], Defferrard et al. [15], Kipf and
Welling [34], Masci et al. [42], Boscaini et al. [5], Monti et al. [44], Fey et al. [18]) can
be constructed from these two frameworks. Then, we have an in-depth discussion of these
networks, pointing out their design intuition, insights, and key properties.

4.1 Spectral Convolution Operations

4.1.1 General Spectral Graph CNNs

Notations and Definitions

We are interested in analyzing signals defined on an undirected, connected, weighted
graph G = (V , E ,W), which consists of a finite set of vertices V with |V| = n, a set of edges
E , and a weighted adjacency matrix W ∈ Rn×n. If there is an edge e = (i, j) connecting
vertices i and j, the entry Wij (or aij) represents the weight of the edge; otherwise, Wij =
0.

A signal or vertex function f : V → R defined on the vertices of the graph may be
represented as a vector f ∈ Rn, where the ith component of the vector f represents the
function value at the ith vertex in V.

We recall the definitions in Section 3.2 here. The non-normalzied graph Laplacian is
∆ = D − W, where the degree matrix D = diag(

∑
jWij), and normalized definition

is ∆̃ = D−1/2∆D−1/2 = I − D−1/2WD−1/2. Because the graph Laplacian ∆ is a real
symmetric matrix, it has a complete set of orthogonal eigenvectors, which we denote by
Φ = (φ1, . . . , φn)1, known as the graph Fourier basis. These eigenvectors have associated

1Note that there is not necessarily a unique set of graph Laplacian eigenvectors, but we assume through-
out that a set of eigenvectors is chosen and fixed.

26

Chapter 4. 4.1. SPECTRAL CONVOLUTION OPERATIONS

real, non-negative eigenvalues λ1, . . . , λn, identified as the frequencies of the graph, satis-
fying ∆φi = λiφi, for i = 1, 2, . . . , n. The graph Fourier transform of a signal f ∈ Rn is then
defined as f̂ = ΦTf , and its inverse as f = Φ f̂ .

Then the Graph Convolution is defined as:

f ∗ h = Φ


ĥ(λ1) · · · 0

...

0 · · · ĥ(λN)

ΦTf (4.1)

= ĥ(∆)f (4.2)

where h is the convolutional filter on graphs.

Architecture

Similar to classical CNNs (Sec. 2.1), a spectral graph CNN architecture is commonly
formed by a stack of distinct layers (CONV, POOL, FC). The distinction between vari-
ous approaches lies in, (1) the design of the spectral convolutional filters on graphs, (2)
a graph coarsening procedure that groups together similar vertices and a graph pooling
operation that trades spatial resolution for higher filter resolution (see Figure 4.1).

Figure 4.1: Architecture of a CNN on graphs. (Figure reproduced from [15])

Convolutional Layer Similar to the convolutional layer (2.1) of a classical Euclidean
CNNs, we can define convolution for each layer as

gl′ = ξ


p∑
l=1

Φ


ĥl,l′(λ1) · · · 0

...

0 · · · ĥl,l′(λn)

ΦTfl

 (4.3)

27

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.1.

= ξ

(
p∑
l

ΦĤl,l′Φ
Tfl

)
(4.4)

the vectors {fl : fl ∈ Rn}l=1,...,p and {gl′ : gl′ ∈ Rn}l′=1,...,q represent the p- and q-dimensional
input and output signals defined on the vertices of the graph, respectively. Ĥl,l′ represents
the spectral trainable filter, and ξ is a non-linear function applied on the vertex-wise value.

We should stress that the progress of spectral-based networks lay on the design of
the spectral filter, which influence the computational complexity and the number of pa-
rameters in the convolutional layer and then the network performance. In the following
section, we focus on this part of each method, and show the advantages and maintaining
drawbacks.

Pooling Layer The pooling layer in the sGCNN is typically along with graph coarsening
process (details in Sec. 3.3). We recall the definition of general pooling defined in (2.2),

g′l(x) = P ({fl(x′) : x′ ∈ N (x)}), l = 1, . . . , q

where N (x) ⊂ V is a neighborhood around x and P is a permutation-invariant func-
tion such as a Lp-norm. We therefore resort to graph coarsening techniques to construct
such neighborhood at different resolutions. This process transforms a given graph G =
{V , E ,W} into a coarser graph Greduced = {Vreduced, Ereduced,W} with fewer vertices and
edges. Basically, for each vertex i in the coarsest graph Greduced, we treat the corresponding
vertex set Ai ∈ V as the neighbors, and then perform max pooling.

Fast Pooling After coarsening, however, a direct application of the pooling operation
would need a table to store all matched vertices, which would result in a memory ineffi-
cient, slow, and hardly parallelizable implementation. Defferrard et al. [15] proposed a
fast-pooling approach by arranging the vertex indexing such that adjacent nodes are hier-
archically merged at the next coarser level. This makes it as efficient as a 1D-Euclidean
grid pooling. We briefly explain the method here:

1. Create the balanced binary tree. After coarsening in each level, each vertex has
either two children if it was matched at the original graph, otherwise one. For those
single vertices, fake vertices are added to pair with the singletons such that each node
has two children. This makes a balanced binary tree. Input signals are initialized with
a neutral value at the fake nodes, e.g. 0.

2. Rearrange the vertex. Arbitrarily ordering the nodes at the coarsest level, then
propagating this ordering to the original levels, i.e. node k has nodes 2k and 2k + 1
as children, produces a regular ordering in the original level. Adjacent vertices then
are hierarchically merged at coarser levels.

Figure 4.2 shows an example of the whole process. This regular arrangement makes the
operation very efficient and satisfies parallel architectures such as GPUs as memory ac-
cesses are local, i.e. matched nodes do not have to be fetched.

In the following sections, we will not focus on coarsening and pooling methods here
and instead will emphasize high-level differences that exist across different networks.

28

Chapter 4. 4.1. SPECTRAL CONVOLUTION OPERATIONS

Figure 4.2: Example of Graph Coarsening and Pooling. We carry out a max pooling of size 4
on a signal x ∈ R8 on G0, the original graph given as input. Note that it originally possesses
n0 = |V0| = 8 vertices, arbitrarily ordered. For a pooling of size 4, two coarsenings of size 2 are
needed: let Graclus gives G1 of size n1 = |V1| = 5, then G2 of size n2 = |V2| = 3,the coarsest
graph. Sizes are thus set to n2 = 3, n1 = 6, n0 = 12 and fake vertices (in blue) are added to V1

(1 vetex) and V0 (4 vertex) to pair with the singeltons (in orange), such that each vertex has
exactly two children. Vertices in V2 are then arbitrarily ordered and vertices in V1 and V0 are or-
dered consequently. At that point the arrangement of vertices in V0 permits a regular 1D pool-
ing on x ∈ R12 such that z = [max(x(0),x(1)),max(x(4),x(5),x(6)),max(x(8),x(9),x(10))] ∈
R3, where the signal components x(2), x(3), x(7), x(11) are set to a neutral value.

For convenience, We consider Graclus [16], multilevel clustering algorithm (Sec. 3.3),
combined with fast pooling approach [15] as a General Graph Pooling Layer in this thesis.

Notes on optimization and implementation details

Most of experiments are set on the task of classification or signal prediction on vertices
of graphs. Spectral network architectures are commonly based on a classical convolutional
network, namely by interleaving graph convolution, ReLU and graph pooling layers (no this
layer if the task is for vertex classification), and ending with one or more fully connected
layers. Models are trained with cross-entropy loss, using SGD+Momentum and Adam [32]
optimization methods.

4.1.2 Vanilla Spectral Graph CNNs

Conv Layer

Bruna et al. [7] (2013) pioneered the work to generalize a convolutional layer by operating
on the spectrum of the weights, given by the eigenvectors of its graph Laplacian:

gl′ = ξ

(
p∑
l=1

Φddiag(α1,l,l′ , . . . , αd,l,l′)Φ
T
d fl

)
, l = 1, . . . , p; l′ = 1, . . . , q (4.5)

where diag(α1,l,l′ , . . . , αd,l,l′) is a d× d diagonal matrix of spectral multipliers presenting as
a learnable filter in the frequency domain, and Φd represents the first d Laplacian eigen-
vectors sorted by eigenvalues from lowest to highest (λ1 ≤ . . . ≤ λd ≤ . . . ≤ λn). Only first
d eigenvectors are used, because in practice, the first d eigenvectors of the Laplacian
are useful which carry the smooth geometry of the graph. We provide the explanation

29

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.1.

Figure 4.3: A toy example illustrating the difficulty of generalizing spectral filtering across non-
Euclidean domains. Left: a function defined on a manifold (function values are represented by
color); middle: result of the application of an edge-detection filter in the frequency domain;
right: the same filter applied on the same function but on a different (nearly-isometric) domain
produces a completely different result. The reason for this behavior is that the Fourier basis
is domain-dependent, and the filter coefficients learnt on one domain cannot be applied to
another one in a straightforward manner. The figure is from Bronstein et al. [6].

in Section 3.2.2, that is, the graph Laplacian eigenvectors associated with low frequencies λl
vary slowly across the graph, i.e. smooth or localized in the spacial domain. This is a very
important property when we try to use harmonic analysis on graphs. Generally, the cutoff
frequency d depends upon the intrinsic regularity of the graph and also the sample size.

Bruna et al. [7] argued that if the graph has an underlying group invariance this spec-
tral construction can discover it. They showed that, when applied to natural images, the
construction in (4.5) using the covariance as the similarity kernel recovers a standard
convolutional network, without any prior knowledge, which can also implies translation
invariant in the classical Euclidean CNNs. However, in many cases the graph does not
have a group structure, or the group structure does not compute with the Laplacian, and
so we cannot think of each filter as passing a template across V and recording the correla-
tion of the template with that location. Bruna et al. [7] proved this from the subsampled
MNIST experiment that in the spectral construction the measurements are not enforced
to become spatially localized and therefore cannot recognize localized oriented strokes of
MNIST digits effectively. By adding the smoothness constraint on the spectrum of the fil-
ters improves classification results, since the filters are then enforced to have better spatial
localization.

30

Chapter 4. 4.1. SPECTRAL CONVOLUTION OPERATIONS

Pooling Layer

The pooling in this framework is obtained via dropping the last part of the spectrum of
the Laplacian, leading to max-pooling. It follows that strided convolutions can be general-
ized using the spectral construction by keeping only the low-frequency components of the
spectrum. This property allows us to interpret (via interpolation) the local filters at deeper
layers in the spatial construction to be low frequency.

In this work, they only used a naive multiscale clustering on the space side construction
that is not guaranteed to respect the original graph’s Laplacian and no explicit spatial
clustering in the spectral construction.

Complexity Analysis

Firstly, we consider about the complexity of the learnable parameters in each layer. As-
suming only d eigenvectors of the Laplacian are kept, equation (4.5) shows that each layer
requires p · q · d = O(|V|) paramters to train, whereas we should stress that, in classical
ConvNets, this is O(1). Complex models may lead to overfitting to some extent. This is
one of the drawbacks of this method.

Nevertheless, the computational complexity in each layer can not be neglected. The
computation of the forward and inverse graph Fourier transformation incurs expensive
O(|V|2) multiplication by the matrices Φk and ΦT

k , as there is no FFT-like algorithms on
general graphs. By comparison, the classical ConvNets requires O(n) computation in each
conv layer. This therefore is another drawback of this approach.

Drawbacks

In summary, there are four distinct drawbacks of such methods (N.B. the analysis of pool-
ing procedure is not included, and the same as the following other compared methods):

1. O(|V|) trainable parameters in each conv layer.

2. O(|V|2) computational complexity in each conv layer.

3. Spectral filters are not guaranteed for spacial localization.

4. Filters are basis-dependent, i.e. not generalized across graphs.

4.1.3 SplineNets

In order to make the convolutional kernels restricted to have small spatial support, which
enables the model to learn a number of parameters independent of the input size and also
reduce the risk of overfitting, Henaff et al. [26] (2015) argued that smooth spectral filter
coefficients result in spatially-localized filters (an argument similar to vanishing moments).
The theory support derives from the Parseval Identity,∫ +∞

−∞
|x|2kf(x)2dx =

∫ +∞

−∞
|∂

kf̂(λ)

∂λk
|2dλ (4.6)

31

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.1.

This suggests that, in order to learn a layer in which features will be not only shared
across locations but also well localized in the original domain, one can learn spectral
multipliers which are smooth. Bruna et al. [7] suggested to use this as principle in a
general graph, by considering a smoothing kernel K ∈ RN×N0, such as cubic splines.

However, the notion of smoothness requires some geometry in the spectral domain.
We explain the smoothness with respect to the intrinsic structure of the weighted graph
(i.e. W,G) in Sec. 3.2.3. The notions of global smoothness is defined through discrete
p-Dirichlet form of f , and in particular, p = 2,

S2(f) = fT∆f

Conv Layer

Henaff et al. [26] used the spectral filter as the form of

ĥ(λi) =
r∑
j=1

αjβj(λi), i = 1, 2, . . . , k (4.7)

where β1(λi), . . . , βr(λi) are some fixed interpolation kernels such as cubic splines, and
α1, . . . , αr are learanble parameters. In matrix notation, the conv layer can then be ex-
pressed as

gl′ = ξ

(
p∑
l

Φkdiag(Bα)ΦT
k fl

)
l = 1, . . . , p; l′ = 1, . . . , q (4.8)

where B = (βj(λi)) is a k × r matrix and α = (α1, . . . , αr) is a vector of coefficients.

Pooling Layer

The similar multi-resolution spectral clustering was used here with that of Bruna et al. [7]
Vanilla Spectral Graph CNNs.

Complexity Analysis

As the interpolation coefficients of spline are fixed to r, the total number of learnable
parameters in each lay is independent of the input size V of the graph G, thus recovering
the same learning complexity as CNNs on Euclidean grids. Hence, We can expect the
improvements of the performance.

The computation complexity remain O(|V|2) because of the computation of forward
and backward Fourier transformation, i.e. Φk,Φ

T
k .

Drawbacks

Remaining drawbacks can then be concluded as,

1. O(|V|2) computational complexity in each conv layer.

2. Filters are basis-dependent.

32

Chapter 4. 4.1. SPECTRAL CONVOLUTION OPERATIONS

4.1.4 ChebNets

We recall an important relation of filtering in the graph spectral domain and the ver-
tex domain illustrated in Sec. 3.2.4. When the frequency filter in (3.14) is an order of
K polynomial ĥ(λl) =

∑K
k=0 akλ

k
l for some constants {ak}k=0,1,...,K , we can interpret the

filtering equation (3.14) in the vertex domain. We have

fout(i) =
N∑
j=1

fin(j)
K∑
k=0

ak(∆
k)i,j

Moreover, given (∆k)i,j = 0 when the shortest-path distance dG(i, j) between vertices i and
j (i.e. the minimum number of edges comprising any path connecting i and j) is greater
than k [23], we can observe an useful property that if the spectral filter is an order of K
polynomial, it is exactly K-hop localized in the spatial domain.

Conv Layer

Defferrard et al. [15] (2016) exploited this property and designed localized filters of the
form of polynomial parametrization.

ĥ(λi) =
r−1∑
j=0

αjλ
j
i , i = 1, . . . , n (4.9)

In matrix notation,

ĥ(Λ) =


∑r−1

j=0 αjλ
j
1 · · · 0

...

0 · · ·
∑r−1

j=0 αjλ
j
n

 (4.10)

Then the convolution form is

gl′ = ξ

(
p∑
l

Φĥ(Λ)ΦTfl

)
(4.11)

= ξ

(
p∑
l

ĥ(∆)fl

)
, l = 1, . . . , p; l′ = 1, . . . , q (4.12)

However the computational complexity of equation (4.12) is still high with O(|V|2) op-
erations because of the multiplication with the Fourier basis Φ. A solution to this problem
is to parametrize ĥ(∆) as a polynomial function that can be computed recursively from ∆,
as r multiplications by a sparse graph G costs O(r|E|) � O(|V|2). One such polynomial,
traditionally used in Graph Signal Processing to approximate kernels (like wavelets), is the
Chebyshev polynomial [23].

33

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.1.

Definition 4.1.1 (Chebyshev polynomial). The Chebyshev polynomials are defined by
the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

These polynomials form an orthogonal basis for L2([−1, 1], dy/
√

1− y2), the Hilbert space
of square integrable functions with respect to the measure dy/

√
1− y2.

Chebyshev Spectral Filter Defferrard et al. [15] designed the spectral filter using Cheby-
shev polynomial. The filter can thus be parametrized as the truncated expansion

ĥ(Λ) =
r−1∑
j=0

αjTj(Λ̂) (4.13)

where the parameter {αj}j=0,...,r−1 are the coefficients of Chebyshev polynomials. Λ̂ =
2Λ/λmax − I, a diagonal matrix of scaled eigenvalues that lie in [−1, 1]. We can see the
Figure 4.4 that it is stable under perturbation of the coefficients. The convolution operation
can then be written as

gl′ = ξ

(
p∑
l

Φ
r−1∑
j=0

αjTj(Λ̂)ΦTfl

)
(4.14)

= ξ

(
p∑
l

r−1∑
j=0

αjTj(∆̂)fl

)
l = 1, . . . , p; l′ = 1, . . . , q (4.15)

where ∆̂ = 2∆/λmax − I. Denoting Fj,l = Tj(∆̂)fl ∈ Rn, we can then use the recurrence
relation to compute Fj,l = 2∆̂Fj−1,l − Fj−2,l with F0,l = fl and F1,l = ∆̂fl. The equation
(4.15) can then be written as

gl′ = ξ

(
p∑
l

r−1∑
j=0

αjFj,l

)
l = 1, . . . , p; l′ = 1, . . . , q (4.16)

Pooling Layer

Pooling layer consists of two steps: (i) the coarsening phase of multilevel Graclus’ algo-
rithm; (ii) Defferrard et al. [15] fast pooling method.

Complexity Analysis

Cayley spectral filters now reduce computational complexity to O(r|E|) = O(n) for sparse
graphs, as there is no need to compute the forward and backward Fourier transform, and
also eigendecomposition of the Laplacian ∆.

34

Chapter 4. 4.1. SPECTRAL CONVOLUTION OPERATIONS

Figure 4.4: Plot of the first five Chebyshev T polynomials

Drawbacks

This spectral construction still have the drawback of basis dependent.

4.1.5 GraphConvNets

Kipf and Welling [34] (2016) simplified the Chebyshev polynomial of order r − 1 to the
linear form, i.e. r = 2, and assumed λmax = 2. Under these approximations, equation
(4.15) simplifies to:

gl′ = ξ

(
p∑
l

α0fl + α1(∆− I)fl

)
(4.17)

= ξ

(
p∑
l

α0fl − α1D
−1/2WD−1/2fl

)
l = 1, . . . , p; l′ = 1, . . . , q (4.18)

with two free parameters α0 and α1. The Laplacian ∆ here means the normalized graph
Laplacian.

Intuition The intuition can be explained that such a model can alleviate the problem
of overfitting on local neighborhood structures for graphs with very wide node degree
distributions, such as social networks, citation networks and many other real-world graph
datasets. Additionally, for a fixed computational budget, this layer-wise linear formulation
allows to build deeper models, a practice that is known to improve modeling capacity on
a number of domains (He et al. [25]).

In practice, Kipf and Welling [34] further constrained α = α0 = −α1 to address overfit-
ting and to minimize the number of operations per layer. This simplifies equation (4.18)

35

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.2.

to the following expression:

gl′ = ξ

(
p∑
l

α(I −D−1/2WD−1/2)fl

)
l = 1, . . . , p; l′ = 1, . . . , q (4.19)

As the eigenvalues of (I −D−1/2WD−1/2) are now in the range [0, 2], repeated application
of such operator can lead to numerical instabilities and gradient vanishing when used in a
deep neural network model. This can be alleviated by further renormalization,

gl′ = ξ

(
p∑
l

αD̃−1/2W̃D̃−1/2fl

)
l = 1, . . . , p; l′ = 1, . . . , q (4.20)

where W̃ = W + I and D̃ =
∑

j W̃ij

4.2 Spatial Graph Convolution Operations

The issues of spectral graph CNNs (1. the model trained on one shape is hard to be applied
to another shape; 2. spectral filters cannot capture local positional relations) can be tack-
led by using methods that extract representations for local Euclidean neighborhoods from
discrete manifolds. Because of this property, the spatial convolution techniques are consid-
ered as better choices when dealing with 3D shape analysis such as shape correspondence
on FAUST dataset. It is worth noting that in the computer graphics community, 3D shapes
are normally modelled as manifolds (further discretized as meshes).

To our best knowledge, Masci et al. [42] proposed the first intrinsic version of con-
volutional neural networks on manifolds applying filters to local patches represented in
geodesic polar coordinates. Boscaini et al. [5] improve this approach by introducing
anisotropic heat kernels. Monti et al. [43] then proposed a more general framework
(MoNet), allowing to design convolutional deep architectures on non-Euclidean domains
such graphs and manifolds. Finally, Fey et al. [18] introduced SplineCNN, which leverages
properties of B-spline bases to efficiently filter geometric input of arbitrary dimensionality.
Currently, SplineCNN achieved the state-of-the-art result on the problem shape correspon-
dence on FAUST dataset. We would introduce these four convolution methods in the
following sections.

4.2.1 General Spatial Graph Convolution

Notations and Definitions

In the domain of computer graphics, 3D shapes are typically modeled as Riemannian man-
ifolds and are discretized as meshes. Since mesh can be further generalized as graphs, we
define the input data as an undirected, connected graph G = (V , E ,U), which consists of a
finite set of vertices V with |V| = n, a set of edges E , and d-dimensional pseudo-coordinates
u(i, j) ∈ Rd. If there is an edge e = (i, j) connecting vertices i and j, the pseudo-coordinate
u(i, j) represents the corresponding edge attribute, for example, local Carteisian coordinate
for 3D meshes or vertex degree for general graphs; otherwise, u(i, j) = 0.

36

Chapter 4. 4.2. SPATIAL GRAPH CONVOLUTION OPERATIONS

(a) Spatial convolution on graphs (b) Spatial Convolution on meshes

Figure 4.5: Examples for spatial convolution in geometric deep learning for (a) image graph
representations and (b) meshes.

A signal or vertex function f : V → R defined on the vertices of the graph may be
represented as a vector f ∈ Rn, where the ith component of the vector f represents the
function value at the ith vertex in V.

Convolution

We follow the form of definition that we define convolution in Euclidean domain (see
Equation (2.1)). For each convolutional layer of the form g = CΓ(f), acting on a p-
dimensional input f(i) = (f1(i), . . . , fp(i)) by applying a bank of filters Γ = (γl,l′(u(i, j))),
l = 1, . . . , p, l′ = 1, . . . , q,u(i, j) ∈ Rd, where fk(i) represents the kth feature channel at the
ith vertex in V. The output feature at ith vertex is then defined as:

gl′(i) =

p∑
l=1

∑
j∈N (i)

fl(i) · γl,l′(u(i, j)) l′ = 1, . . . , q (4.21)

For compact support filters, the space complexity of parameters in per filter is O(1) (in-
dependent of input image size n) and the computational complexity is O(|E|). Generally,
the filter functions Γ defines the way of how to model the pseudo-coordinates u(i, j) (nor-
mally referred as Kernel) and how to parametrize those kernels. We stress that different
frameworks for non-Euclidean spatial CNNs essentially amount to different choice of these
kernels. Figure 4.5 explains how pseudo-coordinates are aggregated during convolution.

4.2.2 GeodesicCNN

Masci et al. [42] firstly proposed the idea by employing a local system of geodesic polar
coordinates constructed at point x to extract patches on the manifold. It is natural to come
up with this idea since in shape analysis, 3D shapes can be modelled as 2-dimensional
surface, which allows us to create a polar system of coordinates around x where the radial

37

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.2.

coordinate is given by some intrinsic distance ρ(i, j) = d(i, j), and the angular coordinate
θ(i, j) is obtained by ray shooting from a point at equispaced angles.

Now, the filter function Γ defined in (4.21) has the Gaussian kernel 4.22 and the
pseudo-coordinates u(i, j) is defined as the local polar geodesic coordinates p(i, j), θ(i, j)
on a 2D surface:

Kα,β(ρi,j, θi,j) = e−(ρ(j)−ρα)2/2σ2
α e−(θ(j)−θβ)2/2σ2

β (4.22)

Where α = 1, . . . , J and β = 1, . . . , J ′ denote the indices of the radial and angular bins,
respectively. Then, the filter function is defined as:

γl,l′(ρi,j, θi,j) =
∑
α,β

Wα,β Kα,β(ρi,j, θi,j) (4.23)

where Wα,β represents weights operating on each kernel. The resulting α · β weights are
bins of width σρ · σθ in the polar coordinates.

Geodesic Convolution we can now define the geodesic convolution layer by substituting
4.23 into the general form of spatial convolution 4.21, yielding:

gl′(i) =

p∑
l=1

∑
j∈N (i)

fl(i) ·
∑
α,β

Wα,β e
−(ρ(j)−ρα)2/2σ2

α e−(θ(j)−θβ)2/2σ2
β (4.24)

where l′ = 1, . . . , q; α = 1, . . . , J ; β = 1, . . . , J ′.

Discussion

Since GCNN operate in the spatial domain and thus do not suffer from the inherent inabil-
ity of spectral methods to generalize across different domains. On the other hand, it works
in an intrinsic way which is then considered to be more robust to capture local invariant
information in 3D shape analysis.

4.2.3 AnisotropicCNN

Boscaini et al. [5] proposed Anisotropic Convolution Neural Netwokrs(ACNN), which
beats the previous framework GCNN on changeling correspondence benchmarks. They
argue that there are some drawbacks for GCNN. First, the method may fail if the mesh is
very irregular. Second, the radius of the geodesic patches must be sufficiently small com-
pared to the injectivity radius of the shape, otherwise the resulting patch is not guaranteed
to be a topological disk. In practice, this limits the size of the patches one can sfaely use,
or requires an adpative radius selection mechanism.

The construction of ACNN inherits all the advantages of the aforementioned intrinsic
CNN approaches, without holding their drawbacks.

38

Chapter 4. 4.2. SPATIAL GRAPH CONVOLUTION OPERATIONS

Anisotropic Convolution

The idea of the Anisotropic CNN is the construction of a patch operator using anosotropic
heat kernels. The anisotropic diffusion equation on the manifold is defined as

ft(x, t) = −divX (A(x)∇Xf(x, t)) (4.25)

where ∇X and divX denote the intrinsic gradient and divergence, respectively, f(x, t) is
the temperature at point x and time t, and the conductivity tensor A(x) (operating on the
gradient vectors in the tangent space TxX) allows to model heat flow that is position- and
direction-dependent. In particular, they used the 2× 2 tensor

Aαθ(x) = Rθ(x)

α
1

RT
θ (x) (4.26)

where matrix Rθ performs rotation of θ w.r.t to some reference (e.g. the maximum cur-
vature) direction and α > 0 is a parameter controlling the degree of anisotropy (α = 1
corresponds to the classical isotropic case). Using as initial condition f(x, 0) a point source
of heat at x, the solution to the heat equation (4.25) is given by the anisotropic heat kernel
hαθt(x,), representing the amount of heat that is transferred from point x to point y at time
t.

Now, we can define the kernel of ACNN as the form of our definition for general spatial
convolution (4.21).

Kβ(u(i, j)) = exp(−1

2
uTRθβ

α
1

RT
θβ

u) (4.27)

where β = 1, . . . , d; d denotes to the dimensionality of the manifolds.
So the anisotropic convolutional layer is defined as:

gl′(i) =

p∑
l=1

∑
j∈N (i)

fl(i) ·
∑
β

Wβ exp(−1

2
u(i, j)TRθβ

α
1

RT
θβ

u(i, j)) (4.28)

note that the pseudo-coordinates u(i, j) here denotes to local polar coordinates ρ(i, j) and
θ(i, j).

4.2.4 MoNet

Monti et al. [43] generalise the previous spatial domain framework for deep learning on
non-Euclidean domains by introducing a local system of d-dimensional pseudo-coordinates
u(i, j) around vertex i. They defined parametric kernels Kβ(u(i, j)) instead of the previous
fixed kernel constructions,

Kβ(u(i, j)) = exp(−1

2
(u− µβ)TΣ−1

β (u− µβ)) β = 1, . . . , d (4.29)

39

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.2.

where Σβ and µβ are learnable d × d and d × 1 covariance matrix and mean vector of a
Gaussian kernel, respectively. Monti et al. [43] further restrict the covariances to have
diagonal form, resulting in 2d parameters per kernel.

We can then conclude the convolutional layer of MoNet in our defined general spatial
convolution framework as below:

gl′(i) =

p∑
l=1

∑
j∈N (i)

fl(i) ·
d∑
β

Wβ exp(−1

2
(u− µβ)TΣ−1

β (u− µβ)) (4.30)

where d denotes to the dimensionality of the manifolds or graphs. Clearly, the spacial
complexity is O(d2) and the computational complexity is O(|E|). MoNet can also be ap-
plied on general graphs using the pseudo-coordinates u as the pseudo-coordinates u some
local graph features such as vertex degree. Figure 4.6 shows how patch operator kernel
functions K(u(i, j)) of GCNN, ACNN and MoNet are used in different generalizations of
convolution on the manifold.

Figure 4.6: Left: intrinsic local polar coordinates , on manifold around a point marked in
white. Right: patch operator kernel functions K(u(i, j)) used in different generalizations of
convolution on the manifold (hand-crafted in GCNN and ACNN and learned in MoNet. Figure
is from [43].

4.2.5 SplineCNN

Fey et al. [18] present Spline-based Convolutional Neural Networks (SplineCNNs) by lever-
aging properties of B-spline bases to efficiently filter geometric input of arbitrary dimen-
sionality, which makes it currently the state-of-the-art approach in several applications.
Similar to MoNet, SplineCNN takes use of the pseudo-coordinates u(i, j) as input. During
locally aggregating feature values in a local patch, pseudo-coordinates determine how the
features are aggregated and the content of f(i) define what is aggregated.

Following our previous defnition for the general spatial convolution framework, the
B-spline based kernel of SplineCNN can then be written as:

Kp∈P(u(i, j)) =
d∏
i=1

Nm
i,pi

(ui) (4.31)

where Nm
i,pi

denotes open B-spline bases of degree m, based on uniform, i.e. equidistant,
knot vectors Piegl and Tiller [49]. Then the filter function Γ is defined as:

40

Chapter 4. 4.3. EVALUATION

γl,l′(u(i, j)) =
∑
p∈P

Wp,l,l′ · Kp∈P(u) (4.32)

where Wp,l,l′ denotes to control points and thus the learnable parameters in the deep
learning paradigm. Given the filter function Γ = (γl,l′) and input node features f , the
output feature at ith vertex is then defined as:

gl′(i) =

p∑
l=1

∑
j∈N (i)

fl(i) ·
∑
p∈P

Wp,l,l′ ·
d∏
i=1

Nm
i,pi

(ui) l
′ = 1, . . . , q (4.33)

From the code Fey et al. [18] provided, the convolution should also be normalized by
node degree and consider the bias. We modify the equation (4.33) as below:

gl′(i) =
1

|N (i)|

p∑
l=1

∑
j∈N (i)

fl(i) ·
∑
p∈P

Wp,l,l′ ·
d∏
i=1

Nm
i,pi

(ui) + bl,l′ l
′ = 1, . . . , q (4.34)

Due to the local support property of B-splines, Kp 6= 0 only holds true for (m + 1)d

different vectors p ∈ P. We denote the vectors p ∈ P with Kp 6= 0 to P(u(i, j)). Then, the
formula (4.34) can be further simplified to,

gl′(i) =
1

|N (i)|

p∑
l=1

(
∑
j∈N (i)

fl(i)
∑

p∈P(u(i,j))

Wp,l,l′ ·
d∏
i=1

Nm
i,pi

(ui) + bl,l′) l
′ = 1, . . . , q (4.35)

clearly, the trainable parameters amount to l · l′ · (m+ 1)d = O(1). Fey et al. [18] provides
the visualization (see Figure 4.7) of the kernel construction method for differing B-spline
basis degree m. They suggest that degree m = 1 produce better results no matter input
data is general graphs or manifolds. We follow this setting in the thesis.

4.3 Evaluation

In order to evaluate the performance of various convolution operators we introduced in
the previous sections, we implement them to tackle two representative tasks: (a) Graph
Vertex Classification on Cora Citation Network [53], where the publication’s content is rep-
resented as a sparse binary bag-of-word vector defined on top of nodes, and nodes are
further structured as a graph; (b) Shape Correspondence on FAUST dataset [4], where 3D
mesh-structured data provided, representing high-resolution human scans. From the eval-
uation on these two problems, we know the capacity, performance of different convolution
operators, which is the evidence for why only the specified operators are chosen in the the-
sis when we develop models for the problems of Protein Function Prediction and 3D Facial
Expression Analysis.

Theoretically, Table 4.1 concludes and compares the key properties of spectral graph
convolutions introduced in Sections (4.1.2, 4.1.3, 4.1.4, 4.1.5) and convolutions in eu-
clidean domains. Since generally protein interaction networks are quite large (5 − 30k

41

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.3.

Figure 4.7: Examples of B-spline basis degrees (a) m = 1 and (b) m = 2 for kernel dimen-
sionality d = 2. The heights of the red dots are the trainable parameters for a single input
feature map. They are multiplied by the elements of the B-spline tensor product basis before
influencing the kernel value. (The figure is from [18])

vertices and 100k− 3M edges), we cannot afford O(N) space complexity and O(N2) com-
putational complexity. Therefore, we mainly focus on GCN and ChebNets. It’s worth to
explore the GPU memory usage, computational efficiency, the capacity of encoding or ag-
gregating graph information of these two operators. Additionally, we’ll also pay attention
on the performance under different r-hops setup. This allows a to acquire knowledge
about these two operators and design suitable hyperparameter settings when we move on
to the problem of protein function prediction.

Locality Space Complexity Computational Complexity

CNN (Euclidean) Yes O(1) O(N)

Vanilla Spectral Graph CNN No O(N) O(N2)

SplineNets Yes O(1) O(N2)

ChebNets Yes (r-hops) O(1) O(N)

GCN Yes (1-hop) O(1) O(N)

Table 4.1: Comparison between Euclidean CNN and spectral graph convolution operators. We
assume the graph is sparse where O(|E|) = O(|V|), so there’s a constant maximum number of
edges per vertex. Here we denote N = |V|.

As for spatial mesh convolution, Table 4.2 compares spatial mesh convolutional op-
erators introduced in Sections (4.2.2, 4.2.3, 4.2.4, 4.2.5) in terms of the receptive field
considered, input node descriptor and loss function during training and inference. Clearly,
SplineCNN allows to perform end-to-end mesh training without hand-crafted feature de-
scriptors as input. These modifications reduce the computation time and memory con-

42

Chapter 4. 4.3. EVALUATION

sumption that are required to preprocess the data by a wide margin. Additionally, the
loss function (4.36) used by GCNN, ACNN and MoNet is well-designed for shape corre-
spondence this problem, which would punish geodesically far-way predictions stronger
than predictions near the ground-truth nodes, while loss function used in SplineCNN is a
less geometrically meaningful criterion, which adds the possibility for us to generalize the
operator to other 3D shape analysis problems, such as 3D facial expression recognition.
Therefore, we mainly focus on SplineCNN.

`reg(Θ) = −
∑

(x,y∗(x))∈T

logfΘ(x, y∗(x)) (4.36)

where fΘ(x, y∗(x)) denotes the probability of xmapped to y, and y∗(x) denotes the ground-
truth correspondence of x on the reference shape. T = (x, y∗(x)) represents the collection
x on the reference shape and y∗(x). The advantages of this loss function in terms of
punishing some geodesically wrong nodes can be interpreted by the truth that it inherits a
part of binary cross entropy loss.

Receptive Field Node Descriptor (dimension) Loss Function

GCNN 2-dim Geodesic Patch OSD (150d) [40] Multinomial Regression

ACNN 2-dim Geodesic Patch SHOT (544d) [51] Multinomial Regression

MoNet 2-dim Geodesic Patch SHOT (544d) [51] Multinomial Regression

SplineCNN 3-dim Manifolds No (1d) Cross Entropy

Table 4.2: Comparison between different spatial mesh convolutional operators. For
SplineCNN, it doesn’t need a hand-crafted descriptor for each node, while OSD or SHOT de-
scriptors are considered to have more information about intrinsic shape context [35].

To sum up, the convolution operators evaluated in the following sections are shown
in the Table. We implemented these operators to perform two mentioned tasks, i.e. graph
node classification and shape correspondence.

Input Data

Node Feature Topological Structure Pseudo-coordinates Hyperparameters

ChebNets Yes Yes No polynomial degree r

GCN Yes Yes No No

SplineCNN Yes Yes Yes dim d, basis degree m

Table 4.3: Indication of the required input data and hyperparameters for the selected graph
convolutional operators.

43

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.3.

4.3.1 Semi-Supervised Graph Node Classification

We evaluate the performance of selected convolutional operators on the popolar Cora
dataset, a citation network [53]. The Cora network consists of 2708 nodes denoted as
scientific publications, which are classified into one of seven classes. The citation network
consists of 5429 linkes. We treat the citation links as undirected edges. Each node in the
network is described by a 1433 dimensional sparse binary word vector, where 0/1-valued
word indicating the absense/presence of the corresponding word from the dictionary.

Architecture and Experimental Setup

For all the experiments, we use the network architecture introduced in [34, 15, 43] of two
convolutional layers with 7 outputs on the second layer. The ReLU activation function is
applied at the output of the first layer. Training was done with 500 nodes and we use
the remaining 2,208 nodes for testing, to simulate labeled and unlabeled information.
We train all models for 200 epochs using Adam [32] with a learning rate of 0.01 and L2
regularization 0.005. We implemented models based on Pytorch. Models are trained and
evaluated with one GPU NVIDIA GTX 1080. As for SplineCNN, we compute the pseudo-
coordinates u(i, j) with the globally normalized degree of target nodes:

u(i, j) =
deg(j)

maxv∈V deg(v)

Figure 4.8: Architecture for the problem graph vertex classification based on Cora citation
network. Left: given the input network with 500 labelled nodes colored with the groundtruth
class; Right: predictions obtained applying graph convolution over the dataset, where marker
fill color represents the predicted class; marker outline color represents the groundtruth class.
The prediction network is produced with B-SplineConv.

44

Chapter 4. 4.3. EVALUATION

Results

Hyperparameter Selection Firstly, we explore the optimial hyperparameters for Cheb-
Nets, GCN and SplineCNN with respect to this problem. We set the outputs of hidden
layers as 16. Additionally, we did another comparison experiment using only fully con-
nected layer (FC), which operation is unable to aggregate information with the help of
the graph topological structure. Table 4.4 shows (i) both ChebyConv and B-SplineConv
perform better with lower degree; (ii) All the three operators which take use of the topo-
logical structure information consistently achieved higher prediction accuracy than only
fully connected operation on each layer. We will point out this later when we compare
the method we developed on protein function prediction and deepNF which the underly-
ing architecture is denoising autoencoder based only on fully connected layer. Figure 4.9
shows the consistant results with Table 4.4, but we also noticed that larger degree allows
model to convergence faster. We can now make the following conclusions:

• From the results provided in Table 4.4 and Figure 4.9, the prediction accuracy over
the task of semi-supervised graph vertex classification would see obvious improve-
ment by simply replacing basic layer from fully connected layer to graph convolution
(e.g. GCN, ChebyConv, B-SplineConv).

• Models with less complexity and less parameters perform consistently better.

Method Filter Hyperparameters Accuracy

GCN (Eq. 4.20) αD̃−1/2W̃D̃−1/2fl No 85.51%

ChebyConv (Eq. 4.16)
∑r−1

j=0 αjTj(Λ̂)ΦTfl
r = 2 85.37%

r = 3 84.74%

B-SplineConv (Eq. 4.35)
∑

j∈N (i) fl(i)
∑

p∈PWp,l,l′ ·
∏d
i=1N

m
i,pi

(ui)

m = 1, k = 2 85.78%

m = 2, k = 3 84.69%

m = 3, k = 4 84.38%

FC Fl ·Wl,l′ No 66.98%

Table 4.4: Summary of results in terms of classification accuracy. Displayed accuracies are
averaged over 10 experiments, where for each experiment the network was trained for 200
epochs.

Neural Network Parameter Selection We further discuss about the influence of hidden
layer outputs. This is a fundamental step to know about the potential capacity of each
convolution operators under the situation when the model complexity becomes higher.
Now, We initialize models with hidden layer outputs ranging from 16, 32, 128, 256. We take

45

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.3.

Figure 4.9: Test Accuracy over B-splineConv, GCN and ChebyConv on Cora Citation Network.

the optimial hyperparameter setting for ChebConv and B-SplineConv from the previous
conclusion. Other experimental setup remain the same with before.

Table 4.5 shows all the methods with less hidden layer outputs performs better. Figure
4.10 proves that higher model complexity (more neurons) means faster convergence rate.

Method
Accuracy (percnetage)

16 HLO 32 HLO 128 HLO 256 HLO

GCN (Eq. 4.20) 85.46 85.51 85.37 85.42

ChebyConv (Eq. 4.16) 85.33 84.74 84.28 82.29

B-SplineConv (Eq. 4.35) 85.64 85.46 85.28 85.19

FC 67.66 67.39 67.07 67.03

Table 4.5: Summary of results in terms of classification accuracy over different hidden layer
outputs. Displayed accuracies are averaged over 10 experiments.

Training Time and GPU usage We test the training efficiency of all the methods and
GPU usage under 256 hidden layer outputs. Figure 4.11 shows model training over B-
SplineConv requires the highest time. Another distinct point is that although GCN is the
simplification version of ChebyConv, it costs larger GPU memory during training process
(note that ChebyConv compared in the bar chart use also the degree of 1 polynomial,
which means 1-hop locality, so the comparison is fair).

46

Chapter 4. 4.3. EVALUATION

(a) GCN (b) ChebyConv (c) B-SplineConv (d) FC

Figure 4.10: List of comparison of GCN, ChebyConv, B-SplineConv and FC over different
hidden layer outputs.

(a) GCN (b) ChebyConv

Figure 4.11: GPU memory usage comparison between GCN, ChebyConv, B-SplineConv and
FC. Training time is evaluated over second unit and GPU memory usage is over MB.

47

Chapter 4. Spectral and Spatial Graph Convolutions and Evaluation SECTION 4.3.

4.3.2 3D Shape Correspondence

Finding the correspondence in a collection of shapes can be posed as a labelling problem,
where one tries to label each vertex of a given query shape X with the index of a corre-
sponding point on some reference shape Y [42]. We can deal this problem with the similar
way when we do in the last problem, graph node classification on Cora citation network.
For a point i in the query shape X , the output of the last layer of the network produces
m-dimensional vector denoted by the probability of i mapping to m nodes on the reference
shape Y. Each node on the query shape X has a unique registration node in the reference
shape Y. Learning is then done by minimizing soft cross entropy loss. We can use similar
architecture used in graph node classification.

The difference of this problem with the previous one is the underlying structure is
manifolds or discretize 3D meshes for usage. Bronstein et al. [6] point out that intrinsic
convolution operators are more capable of dealing such problems than spectral convolu-
tion operators. We apply GCN, ChebyConv and B-SplineConv on this problem to verify this
property.

We use the FAUST dataset [4], containing 10 scanned human shapes in 10 different
poses, resulting in a total of 100 non-watertight meshes with 6, 890 nodes each. The first
80 subjects in FAUST were used for training and the remaining 20 subjects for testing.
Ground truth correspondence for each node in each query shape X are given in the exact
same order (i.e. vertex i in the query shape is labeled as i).

Architecture

Since the dataset is more complicated than the last problem, we use the below architecture
for all the operators: Input → BasicModule[32] → 4 * BasicModule[64] → Lin(256) →
Lin(6990). BasicModule denotes either of GCN, ChebyConv, B-SplineConv or FC. Lin(o)
denotes a 1× 1 convolutional layer to o output featues per node. As non-linear activation
function, we apply ReLU at after each convolutional layer and the first Lin layer. For the
last layer of the network, we apply log-softmax function in order to evaluate the loss with
cross entropy loss. Training is done for all the experiments for 100 epochs with a batch
size of 1. Adam optimizer is used with the initial learning rate 0.01. Table 4.6 reports the
description of each basic module and the corresponding hyperparameter setting we used.

Method Filter Hyperparameters

GCN (Eq. 4.20) αD̃−1/2W̃D̃−1/2fl No

ChebyConv (Eq. 4.16)
∑r−1

j=0 αjTj(Λ̂)ΦTfl r = 2

B-SplineConv (Eq. 4.35)
∑

j∈N (i) fl(i)
∑

p∈PWp,l,l′ ·
∏d

i=1N
m
i,pi

(ui) m = 1, k = 5

FC Fl ·Wl,l′ No

Table 4.6: Description of the basic module used in this problem.

48

Chapter 4. 4.3. EVALUATION

Results

We report the prediction accuracy of each node on meshes in the testset. Figure 4.12
shows the prediction accuracy of each node compared with the groundtruth label of each
node. It indicates that both ChebyConv and B-SplineConv can learn meaningful infor-
mation from 3D shapes, while it’s harder for GCN to extract underlying feature and we
cannot see any fluctuation as for FC. B-SplineConv achieved the highest prediction accu-
racy around 95.7%, which attributed to its stronger capacity of extracting intrinsic shape
context. Therefore, we would focus on B-SplineConv when we evaluate the problem of 4D
facial expression analysis because its underlying structure is also manifold.

Figure 4.12: Prediction accuracy of each node of the meshes in testset.

49

Chapter 5

Protein Function Prediction

In the last a few years, an abundance of large-scale protein function networks was pro-
duced by high-throughput experimental methods. The connectivity of these networks
provides a rich source of information for inferring functional annotations for genes and
proteins. An important challenge has been to develop methods to extract useful feature
representations for function prediction. With the appearance of geometric deep learning
[6], which shows advantageous in capturing underlying features in graph- or manifold-
structured data. Especially in Section 4.3.1, we already show that geometric deep learning
methods achieve high prediction accuracy over the task, semi-supervised multi-class classi-
fication on Cora citation network [53]. We therefore motivated to apply geometric deep
learning methods on this problem. However, we highlight the key difference between
these two problems, leading protein function prediction to be a harder and different
problem compared to citation network prediction: it is necessary to point out the key
difference between these problems:

1. Only topological information (see Figure 5.2, human protein-protein interaction net-
work) provided in protein function prediction. Cora citation network provides 1, 433
dimensional sparse binary bag-of-words feature vector describing the content of each
node (i.e. publication), while no relevant information is provided for each node
(i.e. protein or gene) in protein/gene interaction network.

2. Unbalanced multi-label classification. As for Cora citation network prediction, each
node is classified to 1 over 7 classes by minimizing cross entropy loss over the prob-
ability of the true label. However, in protein function prediction this problem, each
protein should be classified to multiple labels (i.e. functional annotations, MF, BP,
CC). We cannot achieve this goal by minimizing cross entropy loss. It should also be
noted that the amount of functional annotations for each protein is varied. Then, it
is not allowed to solve the problem from finding the best k prediction classes.

3. Large sparse state space. We take the example of human MF functional annotations
for illustration. The state space for each protein is 274 and the total state space is
4, 377, 972. The positive states account for only 0.571%, where if protein X contains
function Z, the state of this protein is labeled as positive.

4. Extremely high dimensional topology. Human BioGRID network contains 1, 682, 361

50

Chapter 5. 5.1. PROBLEM DEFINITION

edges and 15, 087 nodes, while Cora citation network only has 5, 278 edges and 2, 708
nodes.

In the following sections in this chapter, we first give a concise definition of protein
function prediction this problem with computer science terminology. Then we show our
efforts on this problem at the beginning and problems we met at that stage. Finally, we
show how we solve this problem and achieve the current state-of-the-art performance over
this problem.

5.1 Problem Definition

Given multiple protein interaction networks (e.g. human, mouse, yeast BIOGRID or Bi-
oGRID protein interaction networks) and functional annotations (molecular function (MF),
biological function (BP), cellular function (CC)) for partial proteins, the task is to predict
the functional annotations for the remaining proteins. In order to deal the problem with
geometric deep learning techniques, we model data as below:

Data The main attributes of data contain:

• For BIOGRID dataset, we construct an adjacency matrix A ∈ RN×N , where N rep-
resents N nodes. If there is an edge e = (i, j) connecting nodes i and j, the entry
Aij = 1; otherwise, Aij = 0. For BioGRID dataset, we construct a weighted adja-
cency matrixW ∈ RN×N because the strengths of associations between proteins are
provided (in range [0, 1]).

• Functional annotation (molecular function (MF), biological function (BP), cellular
function (CC)) matrix Y ∈ RN×C , where C represents C distinctive functional anno-
tations.

• Pseudo-coordinates U ∈ R. Pseudo-coordinates u(i, j) is defined as globally normal-
ized degree of target nodes i (Eq. 5.1), where j ∈ N (i) and N (i) denotes neighbors
of i. V denotes a finite set of nodes in the graph.

u(i, j) =
deg(j)

maxv∈V deg(v)
(5.1)

5.2 Multi-Layer Graph Convolution Network

Inspired by experiments on Cora citation network (Sec. 4.3.1), we propose to build
a multi-layer graph convolution network based on GCN [34], ChebyConv [15] and B-
SplineConv [18]. To the best of our knowledge, this is the first mehod that apply geomet-
ric deep learning technique to learn and inference a protein-protein interaction network.
We show our approach, experiments and results in the following sections. In the end, we
indicate issues we meet at this stage.

51

https://thebiogrid.org/
https://string-db.org/
https://string-db.org/

Chapter 5. Protein Function Prediction SECTION 5.2.

5.2.1 Approach

In this section, we introduce three methods, architectures, measures of how we assess
prediction performance, and data preprocessing procedure.

Notations and Definitions

We define protein-protein interaction network as a connected, undirected adjacency graph
G = (V , E ,W), which consists of a finite set of vertices V with |V| = N , a set of edges E , and
an adjacency weighted matrix W ∈ RN×N . If there is an edge e = (i, j) connecting vertices
i and j, the entry Wij = 1 (or weight wij for BioGRID network); otherwise, Wij = 0.

The non-normalzied graph Laplacian is ∆ = D −W, where the degree matrix D =
diag(

∑
j Wij), and normalized definition is ∆̃ = D−1/2∆D−1/2 = I−D−1/2AD−1/2. Because

the graph Laplacian ∆ is a real symmetric matrix, it has a complete set of orthogonal
eigenvecotrs, which we denote by Φ = (φ1, . . . , φn)1, known as the graph Fourier basis.
These eigenvectors have associated real, non-negative eigenvalues λ1, . . . , λn, identified as
the frequencies of the graph, satisfying ∆φi = λiφi, for i = 1, 2, . . . , n. The graph Fourier
transform of a signal F ∈ Rn is then defined as f̂ = ΦTf , and its inverse as f = Φ f̂ .

Architecture

We propose a multi-layer graph convolution architecture shown in Figure 5.1. We compare
the performance of models based different geometric deep learning methods. In order to
make the comparison fair, we compared three methods using the same two convolution
layers architectures, interleaving with dropout to improve robustness of model extracting
useful features. Additionally, we set an architecture with 6 splineconv layers and 2 fully
connected layers to explore the improvement of performance after increasing model com-
plexity. During forward process, the node feature matrix is updating from layer to layer
and at the last layer, neural network outputs a C-dimensional vector for each node, repre-
senting the prediction probability (range in [0, 1]) in terms of C classes. Learning is done
by minimizing binary cross entropy loss. We show details for each block in Figure 5.1.

Input With original graph G, We obtain adjacency matrix A ∈ RN×N and pseudo-coord-
inate ∀i, j ∈ N (i), u(i, j) = deg(j)/maxv∈V deg(v). We trivially define node feature matrix
F = [1, . . . , 1]T ∈ RN×1. During forward process, the model update node feature matrix.
For networks based on GCN and ChebyConv,A and F are used as input. For network based
on B-SplineConv, additional pseudo-cooridinates are used.

Dropout During training, randomly zeroes some of the elements of the input node fea-
ture matrix F with probability p (p = 0.5 in all our experiments) using samples from a
Bernoulli distribution. This has proven to be an effective technique for regularization and
preventing the co-adaptation of neurons as described in the paper [27].

Furthermore, the outputs are scaled by a factor of 1p during training, which means
during evaluation the module simply computes an identity function.

1Note that there is not necessarily a unique set of graph Laplacian eigenvectors, but we assume through-
out that a set of eigenvectors is chosen and fixed.

52

Chapter 5. 5.2. MULTI-LAYER GRAPH CONVOLUTION NETWORK

Figure 5.1: Architectures employed for our experiments. ReLU activation function is used for
the left two architectures, whereas, ELU activation function is used for the right two architec-
tures. For all architectures, binary cross entropy loss is used. To make the comparison between
Cheb and GCN fairly, Cheb used the degree of 1 (so with r = 2). The kernel dimension for
SConv is 1, and kernel size is 2. Adjacency matrix A and pseudo-coordinates are obtained from
protein interaction network. We trivially initialize node feature matrix F = [1, . . . , 1]T ∈ RN×1.

Convolution We assume the input node feature for k1 layer is F(k1) ∈ RN×Ck1 and the
output node feature is G(k2) ∈ RN×Ck2 . We denote fl and gl′ as lth and l′th column of F(k1)

and G(k2) respectively.

• ChebyConv. We employ ChebyConv as below to update feature in terms of each node:

gl′ =
Ck1∑
l=1

(
r−1∑
j=0

αjTj(∆̂)fl + bl,l′

)
l′ = 1, . . . , Ck2

where bl,l′ , αj, Tj denotes the bias, the learnable parameters and the chebyshev poly-
nomial of degree j, respectively.

53

Chapter 5. Protein Function Prediction SECTION 5.2.

• GCN. We update node feature information from the following formula:

gl′ =
Ck1∑
l=1

αD̃−1/2W̃D̃−1/2fl + bl,l′ l′ = 1, . . . , Ck2

where W̃ = W + I and D̃ =
∑

j W̃ij. bl,l′ represents the bias. α is learnable param-
eter.

• BSplineConv. We use the following equation to aggregate feature of node i from
neighbor nodes j ∈ N (i):

gl′(i) =
1

|N (i)|

Ck1∑
l=1

 ∑
j∈N (i)

fl(i)
∑

p∈P(u(i,j))

Wp,l,l′ ·
d∏

k=1

Nm
k,pi

(uk) + bl,l′

 l′ = 1, . . . , Ck2

where Nm
k,pi

and Wp,l,l′ denotes B-spline basis over degree m and learnable parame-
ters, respectively.

Nonlinear Activation Function We apply element-wise nonlinear activation function
ξ(x) at the output of each convolution layer. As for models based on ChebyConv and GCN,
we apply ReLU activation function, while ELU is used for models based on BSplineConv.
At the output of the last layer, all models are applied sigmoid function to enforce the net-
work to output values ranging (0, 1), representing probabilities over different functional
annotations.

ξ(x) = Sigmoid(x) =
1

1 + e−x
=

ex

ex + 1

Loss Function In order to force the network to learn the transformation from mapping
node i to multiple labels, we use binary cross entropy loss to perform this, which works
well especially in the case where each network output is treated independently and labels
are represented as binary values 0 or 1. We assume the network output is matrix X ∈ RN×C

and the target is matrix Y ∈ RN×C , we minimize the following loss L:

L(X,Y) =
1

NC

N∑
i=1

C∑
j=1

`ij (5.2)

`ij = −wij[yij · log xij + (1− yij) · log(1− xij)] (5.3)

where wij denotes the manual rescaling weight given to the loss of each element.

5.2.2 Assessment of Performance

We model the problem of protein function as a multilabel classification problem. The
adjacency matrix A ∈ RN×N and node feature matrix F ∈ RN×1 , which are used as input
for neural network models. We aim to produce score matrix with the same shape to matrix
of label matrix, i.e. S ∈ RN×C and Y ∈ RN×C respectively. In practice, it should be noticed

54

Chapter 5. 5.2. MULTI-LAYER GRAPH CONVOLUTION NETWORK

that there are comparable amounts of proteins not annotated, which should be filtered
in advance, leading to input node matrix as X ∈ RN∗×1, where N∗ < N . We randomly
split all annotated proteins into a training set, comprising 80% of annotated proteins,
and a testset, comprising the remaining 20% of annotated proteins. The performance is
averaged over 5 times repeated experiments.

For each method, we use the following metrics to evaluate the prediction performance:
(i) Micro-averaged F1 score (F1) is computed in the same way as in Cho et al. [11] (2016);
(ii) Micro-averaged area under the precision-recall curve (m-AUPR) is computed by first vec-
torizing the proteinfunction matrices of predicted scores and known binary annotations,
and then computing the AUPR by using these two vectors; Macro-AUPR (M-AUPR) is com-
puted by first computing the AUPR for each function separately, and then averaging these
values across all functions.

5.2.3 Data Preprocessing

We report the results of the methods on human with 15,978 nodes and 217,076 edges
(Figure 5.2), mouse with 5,440 nodes and 13,250 edges (Figure 5.3) and yeast with 5,932
nodes and 88,677 edges (Figure 5.4) BioGRID networks. All functional annotations are
taken from Gene Ontology (GO), containing molecular function (MF), biological process
(BP) and cellular component (CC) GO terms. To make the model performance comparable
to deepNF [19] and Mashup [11], human MF annotations are explicitly arranged into two
functional categories, i.e. categories containing GO terms annotating 31-100 (covering 194
MF GO terms) and 101-300 (covering 80 MF GO terms) proteins, respectively.

Figure 5.2: Human BioGRID network with 15,978 nodes and 217,076 edges. Each node is
colored as the sort of node degree from the highest to the lowest, yielding shallow color to
dark blue color.

55

Chapter 5. Protein Function Prediction SECTION 5.2.

Figure 5.3: Mouse BioGRID network with 5,440 nodes and 13,250 edges. Each node is colored
as the sort of node degree from the highest to the lowest, yielding shallow color to dark blue
color.

5.2.4 Results

We perform experiments with four architectures on three distinct BioGRID networks, name-
ly Human, Mouse and Yeast, using MF, BP, CC functional annotations respectively. All ex-
periments are trained with NVIDIA GTX 1080 for 200 epochs, using Adam optimizer with
the initial learning rate 0.01, divided by 10 when loss is in plateaus after 20 epochs, and
dropout probability 0.5. All the hyperparameter setting for ChebyConv and BSplineConv
are taken from the Cora experiments results reported in Section 4.3.1. As for loss function,
binary cross entropy loss (Eq. 5.2) is used after the network’s sigmoid output. We stress
that the loss should be initialized to give a higher weight to positive functional anno-
tations because labels are highly unbalanced (e.g. positive annotations accounts for only
0.571% of the total human MF annotations). Basically for all experiments, we initialize the
weight matrix with the value 100 for positive annotations and 1 for negative counterparts,
whereas, this setting is still required to further explore.

Human BrioGRID network

The performance of three methods (four architectures) applied on Human SRING network
is shown in Figure 5.5. As for 2 layers architecture, Cheb-based architecture significantly
outperforms the other two methods, in terms of all three measures. In particular, Cheb-
based architecture shows better M-aupr performance than 6-layers Spline-based ar-
chitecture, for the MF-GO terms belonging to the most specific (i.e. annotating between

56

Chapter 5. 5.2. MULTI-LAYER GRAPH CONVOLUTION NETWORK

Figure 5.4: Yeast BioGRID network with 5,932 nodes and 88,677 edges. Each node is colored
as the sort of node degree from the highest to the lowest, yielding shallow color to dark blue
color.

31 and 100 proteins) categories. Generally, for the MF-GO terms belonging to both general
and specific (i.e. annotating between 31 and 300) categories, we observe higher perfor-
mance of 6-layer Spline-based architecture, except in terms of M-aupr performance, for
which 6-layer Spline-based architecture is comparable with 2-layer Cheb-based architec-
ture. Moreover, 6-layer Spline-based architecture has the significantly better performance
compared to its 2-layer architecture, which proves the effectiveness of deeper neural
networks on this problem.

Similar results (Figure 5.6) are observed for BP ontologies, where 6-layer SplineConv
and 2-layer show comparable performance in terms of measures such as M-aupr and m-
aupr, while F1 score of 6-layer architecture is better than 2-layer Cheb-based architecture.
By comparison, 6-layer Spline-based architecture proves to be the best with respect to
predict human CC functional annotations. It should be noticed that the rate of positive
examples of BP is smaller than MF and CC annotations (0.546% vs 0.571% and 0.572%),
which leads to lower scores on all of three measurements.

Mouse and Yeast BioGRID networks

From the results of predicting Mouse MF, BP, CC annotations (Figure 5.7), we observe that
the performance improvement from deeper model is disappear when dealing with
BioGRID networks with lower complexity (mouse BioGRID network containing 5,440
nodes and 13,250 edges, compared to human’s 15978 nodes and 217,076 edges). 2-layer
or 6-layer Spline-base architectures and 2-layer Cheb-based architecture shows similar
performance on all MF, BP, CC annotations, and better than GCN-based architecture.

57

Chapter 5. Protein Function Prediction SECTION 5.2.

Figure 5.5: The performance of three methods (four architectures) in analyzing human Bi-
oGRID networks with MF functional annotations (274 annotations in total), which in particular
MF ontology (from 31 to 300) is further divided into two levels annotating 101-300 and 31-100
proteins respectively. Performance is measured by the area under the precision-recall curve,
summarized over all GO terms both under the micro-averaging (m-AUPR), macro-averaging
(M-AUPR) schemes and F1 score. The error bars are computed based on 5 trials.

Figure 5.6: The performance of three methods (four architectures) in analyzing human Bi-
oGRID networks with BP (1282 annotations in total) and CC (225 annotations) functional
annotations. Performance is measured by the area under the precision-recall curve, summa-
rized over all GO terms both under the micro-averaging (m-AUPR), macro-averaging (M-AUPR)
schemes and F1 score. The error bars are computed based on 5 trials. Because of high GPU
memory usage of GCN with respect to BP annotations (more than 8GB) and our GPB resource
is not satisfied, we didn’t get the result of this series experiments.

58

Chapter 5. 5.2. MULTI-LAYER GRAPH CONVOLUTION NETWORK

Figure 5.7: The performance of three methods (four architectures) in analyzing mouse Bi-
oGRID networks with MF (117 annotations), BP (1077 annotations) and CC (157 annotations)
functional annotations. Performance is measured by the area under the precision-recall curve,
summarized over all GO terms both under the micro-averaging (m-AUPR), macro-averaging
(M-AUPR) schemes and F1 score. The error bars are computed based on 5 trials.

Figure 5.8: The performance of three methods (four architectures) in analyzing yeast BioGRID
networks with MF (157 annotations), BP (688 annotations), CC (170 annotations) functional
annotations. Performance is measured by the area under the precision-recall curve, summa-
rized over all GO terms both under the micro-averaging (m-AUPR), macro-averaging (M-AUPR)
schemes and F1 score. The error bars are computed based on 5 trials.

59

Chapter 5. Protein Function Prediction SECTION 5.2.

A different trend shown on the results of Yeast (Figure 5.8) in terms of MF, BP, CC an-
notations. One distinctive observation is that Cheb-based architecture significantly outper-
forms other methods in terms of MF and BP annotations. We attribute this phenomenon
to ChebConv’s higher quality of features extraction from the complex topology of Bi-
oGRID networks, since the same order of nodes between Yeast (5932) and Mouse (5440),
but more edges of Yeast (88,677) than Mouse (13,250). Additionally, with higher com-
plexity of BioGRID networks (yeast compared to mouse), deeper models shows ad-
vantageous again on all MF, BP, CC functional annotations.

5.2.5 Discussion

From results and analysis in the last section, we can make the following conclusions: (i)
Chebyshev convolution outperforms other methods (B-Spline basis convolution and GCN)
with respect to extracting protein features from BioGRID networks, and the greater per-
formace difference is observed if the complexity of the topological structure increases; (ii)
deeper model is considered to show better prediction performance in terms of human and
feast BioGRID networks, but this superiority is disappeared for mouse BioGRID networks,
which is attributed to lower complexity of BioGRID networks. It’s also worth indicating
that the training time for Chebyshev-based architecture is the smallest (Table 5.1).

2SConv 6SCon 2GCN 2Cheb

Training Time (1 epoch) 0.28s 0.92s 0.35s 0.15s

Table 5.1: The training time for each architecture in 1 epoch. All experiments are performed
on the same NVIDIA GTX 1080.

How to evaluate the results?

As functional annotations (human and yeast, MF, BP, CC annotations) used in existing
publications (deepNF [19], Mashup [11], GeneMANIA [45]) are not the same with our
experiments, it’s hard to compare results fairly with other existing methods, whereas, our
results are more likely worse than others (deepNF, Mashup, GeneMANIA) because one
order of magnitude of performance can be observed. Generally, for any functional anno-
tation, if it is correctly predicted in terms of all proteins (i.e. all positive annotation given
higher scores than negative annotations), M-AUPR result for this function then should be
higher than 0.97 (take example of human MF annotations). If we hold the assumption that
all the methods we chose are capable of extracting useful features representations lying in
graph-structured data, we then should do some further exploration to find where issues
come from.

Analysis

The trends of train and test loss provide more information than accuracy (M-AUPR, m-
AUPR, F1 scores here). Figure 5.9 show all the four architectures are already converged

60

Chapter 5. 5.3. DENOISING GRAPH AUTOENCODER WITH SVM CLASSIFER

Figure 5.9: The loss of three methods (four architectures) in analyzing human BioGRID net-
works with MF functional annotations. Both train and test loss are averaged over 5 trials in
200 epochs. The initial learning rate is 0.01 and decayed when test loss is in plateaus in 20
epochs.

after 200 epochs, and since learning rate is decaying after 20 epochs in plateaus, it’s un-
likely that learning rate is not small enough. Another possibility leading might be wrong
weight initialization, leading the models to fall into local minima every time. We then
evaluated 2Cheb-based architecture with Kaiming Initialization [24], Xavier Initialization
[20], and additionally we ran experiments in 1000 epochs with initial learning rate 0.01,
divided by 10 every 100 epochs. Moreover, we keep tracking of the changing of gradient
by integrating gradients in different layers and computing the frobenius norm. From Fig-
ure 5.10, we observe Kaiming and Xavier can accelerate convergence, yielding a slightly
lower training loss but not remarkable improvements in terms of test loss, meaning the
generalization performance not changed. It’s more likely that the model is actually con-
verged to a flat minimizer, which is generally the suggested point for training deep neural
networks.

At this stage, we suspect that issues may come from BCELoss function since the output
state space is extremely large (millions) and sparse, which capability may be not enough
to achieve such multi-label classification task. We have to find better strategy to encourage
true positive and punish false negative outputs.

5.3 Denoising Graph Autoencoder with SVM Classifer

Inspired by the work deepNF (Gligorijević et al. [19]) on this problem , we are then moti-
vated to design a graph autoencoder architecture, which is capable of learning a compact,
low-dimensional latent feature presentation from graph-structured data in a fully unsu-
pervised way and more importantly it is independent of the function prediction task. This
allows for the use of the entire dataset in the training of the graph autoencoder, resulting

61

Chapter 5. Protein Function Prediction SECTION 5.3.

Figure 5.10: The loss of three methods (four architectures) in analyzing human BioGRID
networks with MF functional annotations. Both train and test loss are averaged over 5 trials
in 1000 epochs. The initial learning rate is 0.01, divided by 10 every 100 epochs. The left
comparison experiment keeps the original weight setting, and the middle and the right one are
initialized by Xavier and Kaiming initialization respectively.

in high-quality features. Additionally, we would incorparate the idea of denoising autoen-
coder introduced in Sec. 2.2.2, which proved to produce the higher level representations
(stable and robust). In order to enable semi-supervised multi-label classificaiton, the ex-
tracted features are then used to train a SVM. In Sec. 4.3.1, we have already proved that
geometric deep learning methods (especially GCN, ChebConv, BSplineConv) perform far
more better than stacking fully connected layer since it cannot take use of additional topol-
ogy information during propagation. We therefore believe we could undoubtly achieve
better performance than deepNF, which provides the current state-of-the-art performence
on this problem.

In the following subsections, we would show how we build a graph autoencdoer to
encode latent graph feature representation in an unsupervised way, and then show our
experimetns results.

5.3.1 Approach

In this section, we use Notations and Definitions defined in the Section 5.2.1.

Architecture

The Figure 5.11 shows the architecture of our model. We start from training the denois-
ing graph autoencoder with full dataset until the model converges. Then we extract the
latent feature representation from the bottleneck layer and train a SVM classifer to predict
multiple functional annotations in terms of each protein.

We denote the input node feature matrix (left, Figure 5.11) Fin = [1, . . . , 1]T ∈ RN×1.
The output of the autoencoder is Fout ∈ RN×1.

Corruption Process We consider a common noise model, isotropic Gaussian noise (GS).
Therefore, the corrupted node feature matrix F̃|F ∼ N (F, σ2I). This corrupted matrix is
then fed to the aotoencoder training.

Encoder During forward process, the graph topology is fixed and the same adjacency
matrix A is used during chebyshev convolution. We stack multi-layer chebyshev convo-

62

Chapter 5. 5.3. DENOISING GRAPH AUTOENCODER WITH SVM CLASSIFER

Figure 5.11: The architecture of denoising graph autoencoder incorporated with SVM classi-
fier.

lution to update node feature information so as to capture high-dimensional topological
structure lying in graphs. Basically, at each layer of the encoder, we update node feature
using the following equation:

gl′ =
Ck1∑
l=1

(
r−1∑
j=0

αjTj(∆̂)fl + bl,l′

)
l′ = 1, . . . , Ck2

where bl,l′ , αj, Tj denotes the bias, the learnable parameters and the chebyshev polynomial
of degree j, respectively.

We assume the output is G ∈ RN×Ck2 . We take the idea of batchnormalization [29],
but now we would normalize the whole node feature matrix over each channel, which
proved to be able to accelerate deep network training by reducing internal covariate shift.

g′l =
gl − E(gl)√
Var(gl) + ε

· γ + β

where gl ∈ RN×1,E(gl),Var(gl) denotes the lth column of the matrix G, mean and vari-
ance of gl, respectively. γ and β represent learnable parameters. During training this
layer keeps running estimates of its computed mean and variance, which are then used for
normalization during evaluation.

63

Chapter 5. Protein Function Prediction SECTION 5.3.

Instead of general choice of ReLU, we use a Parametric Rectified Linear Unit (PReLU)
[24] introduced in Section 2.1.3. Formally, it is defined as the equation 5.4. Here x is the
input of the nonlinear activation ξ operating on each entry of node feature matrix F. a is a
coefficient controlling the slope of the negative part. If a is a small and fixed value, PReLU
becomes the LeakyReLU introduced in Sec. 2.1.3. The motivation of LReLU is to avoid
zero gradients. However, experiments in [41] show that LReLU has negligible impact on
accuracy compared with ReLU. On the contrary, He et al. [24] show PReLU adaptively
learns the parameters jointly with the whole model presenting superiority. They indicate
that from introducing a very small number of extra parameters, PReLU activation gradually
become ”more nonlinear” at increasing depths. In other words, the learned model tends to
keep more information in earlier stages and becomes more discriminative in deeper stages.

ξ(x) =

 x if x > 0

ax otherwise
(5.4)

In the last layer of encoder, we use sigmoid activation function to enforce the outputs
ranging in (0, 1).

Decoder The aim of the decoder is to map the latent feature matrix H ∈ RN×C to the
matrix with the shape with the input node feature matrix, i.e. Fout ∈ RN×1. We take the
same methodologies as the encoder but keep increasing the dimension of the node feature
matrix. It should be noticed that in the last layer of the decoder when mapping F ∈ RN×Ck2

to Fout ∈ RN×1. We apply sigmoid activation function at the output, which then allows us
to minimize the model’s input and output with binary cross entropy loss.

Loss Function At each epoch, learning is done from minimizing the following equation
between initial input (not corruption one F̃) Fin and Fout :

L(Fin, Fout) =
1

N

N∑
i=1

`i (5.5)

`i = yi · log(xi) + (1− yi) · log(1− xi) (5.6)

where xi and yi denotes the ith element of the vector Fin and Fout, respectively.

SVM Classifier

We use the compressed features, H, computed in the previous step, to train an SVM clas-
sifier to predict probability scores for each protein. We use the SVM implementation pro-
vided in the LIBSVM package ([9]).

5.3.2 Assessment of Performance

To measure the performance of the SVM on the compressed features, we adopt 5-fold cross
validation as our evaluation strategy.

64

Chapter 5. 5.3. DENOISING GRAPH AUTOENCODER WITH SVM CLASSIFER

In the 5-fold cross validation, we split all annotated proteins into a training set, compris-
ing 80% of annotated proteins, and a test set, comprising the remaining 20% of annotated
proteins. We train the SVM on the training set and predict the function of the test proteins.
We use the standard radial basis kernel (RBF) for the SVM and perform a nested 5-fold
cross validation within the training set to select the optimal hyperparameters of the SVM
(i.e. c in the RBF kernel and the weight regularization parameter, C) via grid search. All
performance results are averaged over 10 different CV trials.

5.3.3 Data Prepossessing

We report the results of a ChebyConv-based denoising autoencoder on human BioGRID
network with 15,978 nodes and 217,076 edges (Figure 5.2). All functional annotations are
taken from Gene Ontology (GO), containing molecular function (MF), biological process
(BP) and cellular component (CC) GO terms. To make the model performance comparable
to deepNF [19] and Mashup [11], human MF annotations are explicitly arranged into two
functional categories, i.e. categories containing GO terms annotating 31-100 (covering 194
MF GO terms) and 101-300 (covering 80 MF GO terms) proteins, respectively.

5.3.4 Results

Instead of testing the performance on all MF, BP and CC functional annotations, we only
report and analyze the results on BioGRID mouse network in terms of MF functional an-
notation. From working on such dataset, we still can see if the issue is resolved or not, or
if we can see obvious improvement brought by a popular SVM classifier.

During training GraphAE, We use the optimizer Adam with learning rate 0.005, divided
by 5 when loss is in plateaus after 20 epochs and all the weight matrices in terms of
ChebyConv are initilized with Xavier Initialization. We train the model with NVIDIA GTX
1080 for 200 epochs. Then we use the node feature matrix extracted from bottleneck
layer and train a SVM classifer using the standard radial basis kernel (RBF). The SVM
implementation provided in the LIBSVM package [9].

Regarding the SVM step of our method, we use the exact same grid search procedure
as in the Mashup [11] paper for choosing the optimal hyperparameters:

• RBF kernel bandwidth: γ ∈ {0.001, 0.01, 0.1, 1.0}

• regularization parameter of the SVM: C ∈ {0.1, 1.0, 10.0, 100.0}

After training SVM with 5-fold crossvalidation via grid search for optimal hyperpa-
rameters, we report the optimal hyperpameters as following: the optimal regularization
parameter of the SVM C = 1.0 and RBF kernel bandwidth γ = 0.10. Figure 5.12 shows
the results of BioGRID mouse network over MF functional annotations. We provide the
corresponding results from multi-layer ChebyConv introduced in Sec. 5.2. Figure 5.12
indicates results of GraphAE over all the metrics, i.e. Macro-AUPR, Micro-AUPR and Micro-
averaged F1 score are lower than simply stacking graph convolution layers optimized with
binary cross entropy loss. Therefore, it is not necessary to continue conduct experiments
over other dataset. Moreover, we find that SVM which is suggested to work on sparse

65

Chapter 5. Protein Function Prediction SECTION 5.4.

multi-label classification cannot resolve the issue of low performance. This means the low
performance is caused by other factors. In the next section, we would show how we solve
this problem finally.

Figure 5.12: Comparison between architectures of GraphAE with SVM and Multi-Layer Cheby-
Conv Network over BioGRID mouse network on MF functional annotations.

5.4 Novel Deep Graph Neural Networks

In the last section, we introduce how we design a graph autoencoder architecture so as to
extracting graph latent feature representation. However, the relatively low performance
raises the question again. Why can’t we achieve good results? Since in the Section 4.3.1,
we have already proved that it would undoubtedly produce better results by simply re-
placing a fully connected layer or 1 × 1 convolution to geometric deep learning methods
we introduced in the Chapter 4. If we consider this as our proposition, then we should
achieve better results in Sec. 5.2. In the contrast, we haven’t seen results and we sus-
pect it is because we use the wrong strategy to optimize the model. In Sec. 5.3, we turn
to build a graph autoencoder so that we can take advantages of SVM classifier which is
considered to work on sparse multi-label classification problem. Unfortunately, the results
are still not as our expectation. After endless efforts devoted to trying different directions,
we finally found that actually geometric deep learning methods are unable to capture
high-dimensional topological structure directly. We need to assist the model to learn from
data. It is not enough to trivially initialize node feature as one. Finally, we designed
our deep graph neural networks, which achieved the current state-of-the-art performance
on protein function prediction this problem. And we also argue that from taking use of
our models, tasks in terms of node classification defined on general graphs can be solved
without providing hand-crafted features and achieve high performance. For example, we

66

Chapter 5. 5.4. NOVEL DEEP GRAPH NEURAL NETWORKS

prove that using our models to Cora citation network, we can achieve the prediction accu-
racy at 87.2% which is higher than previous methods that using 1, 433-dimensional sparse
bag-of-words node feature vectors.

5.4.1 Approach

Our approach mainly consist of two steps: (i) embedding high-dimensional protein inter-
action networks into low-dimensional vector spaces, which should preserve both the local
and global network structures; (ii) Instead of initializing node feature with hand-crafted
features or predefined values such as ones, we treat the embedded low-dimensional vector
as node feature and train multi-layer graph convolution networks (5.2) to resolve the task
of semi-supervised multi-label classification. Actually, with feature obtained from network
embedding, we can also see dramatical improvements with regard to denoising graph con-
volutional networks (Sec. 5.3). We would show comparison experiments with regard to
these two architectures to see which architecture produce better results for this problem.

Protein Interaction Network Embedding

In order to make the embedded low-dimensional vector space carrying meaningful net-
work structural information, the high-dimensional protein interaction network embedding
step should preserve the network structure. Intuitively, the local network structure, i.e. the
local pairwise proximity between the vertices, must be preserved. This is also coincident
with the inherent property of spectral and spatial convolution operators we used such GCN,
ChebConv and BSplineConv, which are all designed based on 1-hop localization. However,
first-order proximity alone is not sufficient for describing the protein interaction networks
since it is highly complex and sparse. It is important to seek a network embedding method
that addresses the problem of sparsity. A natural intuition is that vertices that share simi-
lar neighbors tend to be similar to each other, say second-order proximity. Additionally, the
method should be able to deal with very large networks, say millions of edges. Therefore,
we resort to the approach of Tang et al. [59] and further modify it to this problem.

For the protein interaction network, we construct high-quality vector representations
of proteins, F ∈ RN×d, preserving potentially complex, non-linear relations among the
network nodes.

First-Order Proximity The first-order proximity refers to the local pairwise proximity
between the vertices in the network. To model the first-order proximity, we adopted the
strategy proposed in [59]. For each undirected edge (i, j), the joint probability between
vertex vi and vj is defined as below:

p1(vi, vj) =
1

1 + exp(−ui · uj)
(5.7)

where ui is the low dimensional vector representation of vertex vi. To preserve the first-
order proximity, we then minimize the KL-divergence,

L1 = −
∑

(i,j)∈E

wijlogp1(vi, vj) (5.8)

67

Chapter 5. Protein Function Prediction SECTION 5.4.

From minimizing the objective (Eq. 5.8), we can represent every vertex in the d-dimensional
space.

Second-Order Proximity The second-order proximity assumes that vertices sharing ma-
ny connections to other vertices are similar to each other. In this case, each vertex is
also treated as a specific context and vertices with similar distributions over the contexts
are assumed to be similar. Therefore, each vertex plays two roles: the vertex itself and a
specific context of other vertices. Then the second-order proximity can be similarly defined
as below,

p2(vj|vi) =
exp(u′Tj · ui)∑|V|
k=1 exp(u′Tk · ui)

(5.9)

where ui is the representation of vi when it is treated as a vertex while u′i is the represen-
tation of vi when it is treated as a specific context. To preserve the second-order proximity,
we then minimize the below KL-divergence,

L2 = −
∑

(i,j)∈E

wijlogp2(vj|vi) (5.10)

By learning ui and u′i that minimize Eq. 5.10, we are albe to represent every vertex vi
with a d-dimensional vector ui.

In practice, we trivially optimize L1 and L2 separately to enforce the embedded vector
representation to preserve both the first-order and second-order proximity. Then, we then
concatenate the embeddings trained by the two methdos for each vertex. In the end, we
obtain the low-dimensional representation for each vertex with a d dimensional vector. We
denote it in a matrix form by F ∈ RN×d, where N denotes |V| for convenience.

Semi-Supervised Multi-label Classification with Graph Convolution Networks

Now, with feature matrix FN×d obtained from protein interaction network embedding and
the adjacency matrix A ∈ RN×N obtained from the original protein interaction networks,
we can conduct the task semi-supervised multi-label classification with graph convolution
networks. Figure 5.13 shows an improved deep graph neural network architecture. The
propagation and the strategy of updating node feature is the same with that defined in
Sec. 5.2. Since in the Sec. 5.2, we already prove that ChebyConv and BSplineConv are
better on this problem in terms of performance and GPU memory usage. Since the input
node feature matrix is larger than we trivially defined before as [1, . . . , 1]T ∈ RN×1, the
model training is limited by the GPU resource.

5.4.2 Results

We firstly show experiments on BioGRID mouse network in terms of MF functional anno-
tations. We train the network with Adam optimizer with initial learning rate 0.01, divided
by 10 when loss is in plateaus after 20 epochs. We intialize dropout probability 0.5. We
train the same 2layer ChebyConv with Section 5.2. We train models with NVIDIA GTX

68

Chapter 5. 5.4. NOVEL DEEP GRAPH NEURAL NETWORKS

Figure 5.13: The architecture of deep graph neural network. The vertex feature obtained
from minimizng first-order proximity loss and second-order proximity loss are concatenate
into a node feature matrix F ∈ RN×d. In the last layer, network produce C-dimensional vector
for each vertex. Here C denotes the classes in total. We use ChebyConv and BSplineConv as
out basic convolution module. Only when using BSplineConv, the module PseudoCooridnates
is required.

1080 for 200 epochs and loss function is binary cross entropy loss without initializing loss
weight. We compare such network which incorporated with protein network embedding
with 2layer ChebyConv network.

Comparison based on multi-layer graph convolution network The figure 5.14 shows
significant improvement after we use the low-dimensional representation of protein inter-
action network as node feature while both models use the same multi-layer graph convo-
lution network based on Chebyshev Convolution.

Comparison based on Denoising Graph Autoencoder Here, we compare the perfor-
mance of denoising graph autoencoder with low-dimensional embedded node feature,
original denoising graph autoencoder, and deepNF. As for all these architectures, we train
200 epochs and use the extracted latent feature to train a SVM classifer with RBF kernel.
We implement deepNF based on Pytorch and we confirmed deepNF hyperparameters set-
ting with the author. Because we only run experiment in one protein interaction network,
while the original deepNF integrate multiple protein interaction networks together. This
explains why deepNF performance here is low. Another explanation may be from BioGRID
network since to our knowledge, no paper is based on such dataset and then we don’t have
baseline result.

Figure 5.15 shows after incorporating embedded vector representation, we can see
considerable improvement (compare NEGraphAE and GraphAE). Additionally, our model
outperforms deepNF over all the metrics.

69

Chapter 5. Protein Function Prediction SECTION 5.4.

Figure 5.14: The performance of improved 2ChebyConv and original 2ChebyConv in analyzing
mouse BioGRID networks with MF (117 annotations). Performance is measured by the area
under the precision-recall curve,summarized over all GO terms both under the micro-averaging
(m-AUPR), macro-averaging(M-AUPR) schemes and F1 score. The error bars are computed
based on 5 trials

5.4.3 Conclusion

Because of the limitation of GPU resource, we can only provide experiments based on Bi-
oGRID mouse network because of using embedded feature introducing large node feature
matrix. However, from experiments provided with regard to BioGRID mouse, it is enough
to state our model outperforms the current baseline method, deepNF. We have already run
some experiments on Cora citation network which we achieved comparable performance
compared with current state-of-the-art model on this problem but they need to use addi-
tional hand-crafted feature. Since the underlying structure of cora citation network and
protein interaction network are the same, we are more than convinced that our model
would produce state-of-the-art results in protein function prediction this problem if GPU
resource is enough.

For the next step, we would integrate batch node training into graph convolution net-
works, which then allows us to train large protein interaction networks.

70

Chapter 5. 5.4. NOVEL DEEP GRAPH NEURAL NETWORKS

Figure 5.15: The performance of improved NEGraphAE, GraphAE and deepNF in analyzing
mouse BioGRID networks with MF (117 annotations). Performance is measured by the area
under the precision-recall curve,summarized over all GO terms both under the micro-averaging
(m-AUPR), macro-averaging(M-AUPR) schemes and F1 score. The error bars are computed
based on 5 trials.

71

Chapter 6

3D Facial Expression Recognition

Over the past a few years, most of works in face recognition involve only 2D images, but
the recognition performance is typically largely affected by inherent pose and illumination
variations. In order to deal with these issues, three-dimensional geometric of the human
face is increasingly used because this avoids such pitfalls of 2D face recognition algorithms
as change in lighting, different facial expressions, make-up and head orientation.

In this chapter, we seek to address the problem 3D facial expression recognition with
geometric deep learning techniques Bronstein et al. [6] based on a new dataset, 4DFAB
(2018 CVPR Cheng et al. [10]). We start by providing a strict problem definition, showing
clearly the tasks, dataset and how do we structure different attributes. Then we show the
approach we used to deal with this problem, from which we achieved the state-of-the-art
performance compared to the baseline result provided by Cheng et al. [10]. Finally, we
show details of how we design experiments to clearly indicate how we make progress step
by step until finally achieved a good result. To our best knowledge, we are the first to build
an end-to-end 3D facial expression recognition system.

6.1 Problem Definition

Given 3D mesh-structured training dataset with each mesh representing one of six facial
expressions for one person, the problem is to recognize new 3D facial expressions from
person not shown in the trainset. We use the 4DFAB dataset (Session1 1), containing
170 participants and each participant providing 4 to 6 basic facial expressions (i.e. anger,
disgust, fear, happiness, sadness and surprise)(see Figure 1.5), resulting in a total of 1018
distinct expressions. Within these expressions, there are 5 similar patterns 2 for 1002
expressions, 4 similar patterns for 14 expressions, 3 similar patterns for 2 expressions.
Therefore, the 4DFAB dataset contains 5072 patterns (meshes) in total. Data is partitioned
in 10-folds, and 17 distinct participants in testset are not shown in trainset (with 153
distinct participants). The number of each class is balanced distributed in both trainset
and testset.

1Session: There are 4 sessions in 4DFAB dataset, recording different video stimulus, and the same partic-
ipant are invited to attend 4 times.

2Similar Patterns: The Frobenius norm of any two similar patterns is in [23.8, 36.9], mean is 32.24, while
the Frobenius norm of two distinct expressions is in [241.2, 616.7], mean is 395.5.

72

Chapter 6. 6.2. DATA CLEAN

Original Data The original meshes in 4DFAB are formulated as menpo.TexturedTriMesh
3 4. The main attributes we used include:

• point. 3D Cartesian coordinates with shape [2064, 3], where 2064 means 2064 nodes
in total for one mesh.

• edge_indices. An unordered index into points that rebuilds the edges of the mesh.
There will be two edges present in cases where two triangles share an edge. The
array shape is [11970, 2].

• label. One label for each mesh in the range [1, 6].

In order to take advantages of Pytorch, a dynamical deep learning framework with
strong GPU acceleration, we encapsulate the above attributes into a Pytorch friendly class,
named Data. We provide graph-based operations based on this class Data.

Data Class Data is constructed with the following attributes from menpo.TexturedTriMesh:

• data.x (torch.FloatTensor). Save node feature matrix with shape [N, C], where
N and C denotes number of nodes and feature dimension, respectively.

• data.y (torch.LongTensor). Save the label of each data (mesh) in the range [0, 5]
which is required for using cross entropy loss provided by Pytorch.

• edge_index (torch.LongTensor). Save the graph connectivity into node index pairs
with shape [2, 2*edges]. The indices in the first row are sorted from low to high.

• data.pos (torch.FloatTensor). Save the 3-dimensional Cartesian coordinates, which
is loaded directly from the property point of menpo.TexturedTriMesh.

6.2 Data Clean

From analysis of prediction results, we noticed the predicted labels for some data with
similar patterns were not coincident, which were assumed to have same predicted labels
with a well-trained network. After visualizing such kinds of data with Mayavi 5, we found
they are corrupted (see Figure 6.1). By going through the whole dataset, the amount of
such data is calculated to account for 5.4% of the whole dataset. It may influence our
model’s capacity to learn from data and inference. Therefore, we exclude this part of data,
resulting in 4,799 meshes left in total. Without explicit statement, all the experiments in
this chapter are conducted based on cleaned dataset except for one pair of experiments,
which used to compare the performance between the cleaned and original dataset.

3Menpo: Menpo is a Python package designed from the ground up to make importing, manipulating and
visualizing image and mesh data as simple as possible.

4menpo.TexturedTriMesh: https://menpo.readthedocs.io/en/stable/api/shape/TexturedTriMesh.html
5Mayavi: a scientific data visualizer written in Python, which supports for plotting 3D data.

73

https://pytorch.org/
https://menpo.readthedocs.io/en/stable/api/shape/TexturedTriMesh.html

Chapter 6. 3D Facial Expression Recognition SECTION 6.3.

Figure 6.1: The front view of corrupted data.

6.3 Approach

In this section, we show our approach in detail and also provide the architecture (see
Figure 6.2) which achieve the current state-of-the-art performance on this problem from
our numerous experiments. We also report our whole exploration process shown in Section
6.5 step by step. The methods and implementation of basic modules with regard to the
architecture figures shown in Sec. 6.5 are the same with what we are going to introduce
in this section. Now we introduce our model in detail.

Figure 6.2: The residual mesh convolution architecture. PReLU activation function is applied
on the output of each batch normalization layer expect for the last layer, where we apply
softmax. It should be noting that non-linear activation function is applied after residual aggre-
gation. Lin(o) represents 1× 1 convolution solely operated on each node.

6.3.1 Notations and Definitions

In this section, We are interested in analyzing signals defined on an undirected, connected
mesh, or say graph G = (V , E ,U), which consists of a finite set of vertices V with |V| = n, a
set of edges E , and U ∈ RN×N×d containing d-dimensional pseudo-coordinates u(i, j) ∈ Rd

where j ∈ N (i). N (i) denotes the neighborhood set of node i.
We denote F ∈ RN×d as node feature matrix where each node containing d-dimensional

74

Chapter 6. 6.3. APPROACH

features. Then fl is defined as the lth channel feature map of node feature matrix F and
fl(i) represents the lth channel feature of node i in V.

6.3.2 Preprocessing

Since our model is based on BSplineConv (Fey et al. [18]), an intrinsic spatial convolu-
tion operator, we need firstly to scan the whole mesh to obtain pseudo-coordinates u(i, j),
which is used to determine how the features are aggregated. Since data is already con-
structed as triangulated mesh (on the left of Figure 6.2), for any node i, we can compute
all the corresponding pseudo-coordinates u(i, j) from traversing all the connected nodes
j.

As for the problem of discrete manifolds, Fey et al. [18] suggest to use 3D Cartesian
coordinates of the target point in respect to the origin point for each edge. We found it is
better to use a globally normalized Cartesian coordinates as below:

u(i, j) = 0.5 +
posj − posi

2 ·max(v,w)∈E |posw − posv|
(6.1)

Eq. 6.1 allows to map spatial relation to a fixed region [0, 1].

6.3.3 Weight Initialization

Weight Matrix We adopt the method introduced in He et al. [24] to initialize weight
matrix in terms of SplineConv, Linear and batch normalization (here replace lin with lout)
layer. Assume the input feature dimension in the kth layer is lin, the weight is then initialize
with N (0, std), where std is defined as:

std =

√
2

1× lin
(6.2)

Bias We trivially initialize all the bias with constant value 0.

6.3.4 SplineConv

We use the following formula to aggregate feature into node i from neighbor nodes j ∈
N (i) (here we consider N(i) including i, i.e. aggregating both neighbor information and
the central node feature):

gl′(i) =
1

|N (i)|

Ck1∑
l=1

 ∑
j∈N (i)

fl(i)
∑

p∈P(u(i,j))

Wp,l,l′ ·
d∏

k=1

Nm
k,pi

(uk) + bl,l′

 l′ = 1, . . . , Ck2

(6.3)
where Nm

k,pi
and Wp,l,l′ denotes B-spline basis over degree m and learnable parameters,

respectively.

75

Chapter 6. 3D Facial Expression Recognition SECTION 6.4.

6.3.5 Batch Normalization

We assume the output in k2 layer is G ∈ RN×Ck2 . We take the idea of batch normalization
[29], but now we would normalize the whole node feature matrix over each channel,
which proved to be able to accelerate deep network training by reducing internal covariate
shift.

g′l =
gl − E(gl)√
Var(gl) + ε

· γ + β (6.4)

where gl ∈ RN×1,E(gl),Var(gl) denotes the lth column of the matrix G, mean and vari-
ance of gl, respectively. γ and β represent learnable parameters. During training this
layer keeps running estimates of its computed mean and variance, which are then used for
normalization during evaluation.

6.3.6 Graph Coarsening

Graph coarsening is what we denote as pool in the Figure 6.2. We use the graph coarsening
strategy introduced in Section 3.3. We briefly explain how it works here.

The coarsening works as follows: given a graph, start with all nodes unmarked. Visit
each vertex in a random order. For each vertex x, if x is not marked, merge x with the un-
marked vertex y that maximizes (3.23) among all edges between x and unmarked vertices.
Then mark x and y. If all neighbors of x have been marked, mark x and do not merge it
with any vertex. Once all vertices are marked, the coarsening for this level is compete.

It should be noting that this pooling strategy is unstable because of the greedy
strategy of coarsening, which means the same topology of different input mesh may
yield different topology of output data after pooling. This leads to a different architecture
compared with classification problems in Euclidean domain, where pooling or strided con-
volution produce fixed size of images which allows it to vectorize 2D image and use fully
connected layer to aggregate all the input neurons to predifined number of output neu-
rons. However, now we cannot do in this way but using average pooling layer to aggregate
information in different nodes to a vector. Our experiments show that if fully connected
layer can be conducted in the same manner as Euclidean domain, the classification perfor-
mance could be higher.

max Wx,y

(
1

dx
+

1

dy

)
(6.5)

Where the edge weight Wx,y is defined as l2 distance.

6.3.7 Average Pooling

This layer average node feature matrix F ∈ RN×d into a vector representation from trivially
averaging. We assume the output vector is g ∈ R1×d:

g =
N∑
k=1

Fkthrow (6.6)

76

Chapter 6. 6.4. TRAINING

6.4 Training

In this section, we discuss how we train the model.

6.4.1 Loss Function

Generally, the loss function for a classification task should be cross entropy loss. The only
thing need to be considered is whether the weight is need to be specified. However, it only
occurs when label is quite sparse. Therefore, in this problem, we use the standard cross
entropy loss with initializing weight of each element as 1. The loss can be described as:

L(X,Y) =
1

N

N∑
i=1

`i(x, y) (6.7)

`i(x, y) = −log(
exp(x[y])∑
j exp(x[j])

) (6.8)

Y denotes label matrix.

6.4.2 Optimizer

Our experiments (Sec. 6.5) show Adam optimizer at the initial training stage would ac-
celarate model convergence, while switching Adam to SGD with momentum in the later
stages would further improve model performance.

6.4.3 Adaptive Learning Rate Strategy

We found an adaptive learning rate strategy would not only lead to better classification,
but also make the stage of hyperparameter tunning easier since it is not necessary to set
annoying initial learning rate and defined learning rate decay steps, e.g. every 30 or 50
epochs etc.

For all our experiments, we train models with a decay learning rate and when test loss
is in plateaus after k epochs, the learning rate r would decay by some factor α. Generally,
we initialize learning rate at r = 0.01, patience k = 10 and factor α = 0.1. This proves to
take effectively for different models and task especially for Adam optimizer.

6.5 Experiments

In this section, we show all the key experiments that allow our explorations over this
problem make progress.

77

Chapter 6. 3D Facial Expression Recognition SECTION 6.5.

(a) Loss (b) Accuracy

Figure 6.3: Experiment I with similar architecture and experiment setting to the paper of
SplineCNN. 6.13(a) shows the comparison between train loss and test loss in 25 epoch; 6.13(c)
shows the comparison between train accuracy and test accuracy in 25 epoch.

6.5.1 Experiment I

The similar experimental setup for shape correspondence of Fey et al. [18] is taken here.
Since SplineConv proves to be advantageous for dealing with discrete manifolds problems,
we expect it work in this problem. While shape correspondence is to make prediction for
each node w.r.t 6890 classes, this problem requires to classify the whole mesh-structured
data. Therefore, the node feature matrix of the output of the last convolutional Layer with
the shape N × F needs to be either mean aggregated into 1 × F or reshape to a vector
with shape 1× (N × F). The vector is then sent to FC layer to output with 6 classes. The
first measure is adopted here, and the explanation is provided in experiment2.

Hence, the architecture with 6 convolutional layers: SConv((k1, k2, k3), 1, 32)→ SConv((k1, k2, k3), 32, 64)→
4 × SConv((k1, k2, k3), 64, 64) → AvgP → FC(256) → FC(6), where AvgP denotes a
layer that averages features in the node dimension. The remaining setting is the same
with Fey et al. [18]. As non-linear activation function, the Exponential Linear Unit (ELU)
is used after each SConv and the first FC layer. For Cartesian coordinates the kernel
size is chosen to be k1 = k2 = k3 = 4 + m = 5. We only evaluate the case when degree
m = 1. Training is done for 100 epochs with a batch size of 1, initial learning rate 0.01
and dropout probability 0.5, using the Adam optimizer [32] and cross entropy loss. The
experiment is performed with NVIDIA GTX 1080.

Discussion Loss and accuracy w.r.t train and test shown in Figure 6.3. Training and
test time for one epoch are 713.87s and 11.13s respectively. We found that after training
with nearly 5 hours, the model still learns nothing useful to classify expressions and the
test accuracy remained 1/6. Analysis with the confusion matrix A.2, all expressions are
recognized as the same expression (varied in different epochs).

Strategy We consider the most useful strategy to resolve the current problem should be
using larger batch size, and the model complexity should be reduced to accelerate model
training.

78

Chapter 6. 6.5. EXPERIMENTS

Analysis of mini-batch size Basically, with smaller mini-batch size, the higher variance
or noise of gradient updates (by averaging the gradients in the mini-batch) is introduced,
which proved to be helpful for converging to flat minimizers (compared to shape mini-
mizer (see Figure 6.4)) with better generalization performance [31]. This does not mean
the smaller (batch size is 1 in this experiment) the better since each gradient updated di-
rection could be highly varied (Figure 6.5), which makes the training harder especially for
dataset with lower variance (4DFAB compared to FAUST).

Figure 6.4: A Conceptual Sketch of Flat and
Sharp Minima. The image is from Keskar
et al. [31]

Figure 6.5: For non-linear deep neural net-
works, the local region of the cross section
of the loss function is nearly a paraboloid.
With batch size = 1, it tends to be hard for
training since the momentum in each iter-
ation is highly likely to be cancelled out.
The view of gradient descent with batch
size equal to 1.

6.5.2 Experiment II

With the discussion in the experiment I, we modified the experimental setup and addition-
ally, set a pair of comparison experiments with 3 Convs without pooling vs 3 Convs with
pooling (Figure 6.6), during which SGD and Adam are interleaving adopted so as to view
the performance of these two commonly used optimizers.

For the experiment settings, ELU is used each convolution and pooling operation is
the same with the section 1. Batch size is 16. The initial learning rate is 1e-2, divided
by 10 when test loss is plateaus (no better loss found in predefined number of epochs).
The initial optimizer is SGD with momentum = 0.9, and in the second stage, optimizer is
changed to Adam. The two experiments are paralleled running on two NVIDIA GTX 1080.

Discussion Figure 6.7 and 6.8 show loss and accuracy for these two architectures. The
training time each epoch for architecture 2.1 and 2.2 are 145.7s and 93.2s respectively.
Table 6.1 shows the prediction accuracy for each class, and the confusion matrix (appen-
dice A.3, A.4) provides detailed prediction statistics of each class. It’s clear that:

1. Optimizer. Both models are hard to train with SGD at the initial stage with loss and
accuracy remaining constant; after changed to Adam, train and test loss decrease

79

Chapter 6. 3D Facial Expression Recognition SECTION 6.5.

Figure 6.6: The architectures of 3conv layer with no pooling (architecture 2.1) and pooling
(architecture 2.2) respectively from left to right. SConv (3, 5) means kernel dimension 3,
kernel size 5 (B-spline basis degree of 1). The remaining experiments hold the same definition.

synchronously. It’s worth noting that moving back to SGD for a well-trained model
with Adam optimizer can normally produce better performance, though related ex-
periment results not provided here.

2. Overfitting. While both architectures appear to overfitting after around 30 epochs,
pooling structure helps avoid overfitting to some extent, and reduce training time
remarkably (93.2s compared to 145.7s). As for prediction accuracy, model with
pooling structure is 4.6% higher than that without pooling, and the mean accuracy
after 50 epochs is around 62.4%, compared to 58.2%.

3. Prediction performance for each class. Table 6.1 shows the prediction accuracy of
both architectures are uniform with respect to 6 classes, i.e. the prediction accuracy
is highest for ’Happiness ’ and ’Surprise’, but low for ’Fear’ and ’Sadness’. It is inter-
pretable since expressions of some participants included in testset may be confusing
or hard to distinguish.

Analysis

• Decay learning rate when test loss is in plateaus. From experiments, we noticed
that such an adaptive learning rate methods demonstrate better performance than
fixed learning rate or pre-scheduled learning rate, and it requires much less effort
in hyperparameter settings. With advisable fixed learning rate, the loss is able to
converge at the beginning until trapped into a flat plateaus, which then requiring
to reduce learning rate to some extent. However, it’s quite annoying to find a good

80

Chapter 6. 6.5. EXPERIMENTS

(a) 3Convs without pooling (b) 3Convs with pooling

Figure 6.7: The train and test loss for experiment II. Optimizer is changed to Adam from 11th
epoch for both architectures.

(a) 3Convs without pooling (b) 3Convs with pooling

Figure 6.8: The train and test accuracy for experiment II. Optimizer is changed to Adam from
11th epoch for both architectures.

(a) Loss of 3convs with directly FC (b) Accuracy of 3convs with directly FC

Figure 6.9: The loss and accuracy of experiment 2* with directly FC structure.

81

Chapter 6. 3D Facial Expression Recognition SECTION 6.5.

without pooling with pooling

Anger 60.00% 56.00%

Disgust 67.06% 60.00%

Fear 40.00% 61.43%

Happiness 80.00% 87.14%

Sadness 44.71% 64.71%

Surprise 83.53% 76.47%

Total 62.8% 67.5%

Table 6.1: The prediction accuracy of experiment II for each class

Parameters GPU Memory (MB)

Directly FC 792, 582 3.02

2FC After AvgP 18, 182 0.07

Table 6.2: The comparison of parameters and GPU memory for two structures, namely directly
FC and 2FC after AvgP. Parameters counted here are only from layers behind SConv. The
memory for each parameter is 4bytes since it is saved as torch.cuda.FloatTensor.

initial learning rate and timing for reducing learning rate. Generally, we used initial
learning rate with 1e − 2 and patience = 10, and this setting performs well for all
experiments.

• AvgP or Fully Connected Layer (FC) (see Figure 6.10). When dealing with 2D im-
age recognition, FC is generally added to the last Conv Layer to convert feature ma-
trix with shape W×H×D to fixed number of neurons so as to output C classes in the
end. It’s worth discussing whether or not this strategy is workable in Non-Euclidean
domain since node order is not defined in non-Euclidean domain. Fey et al. [18] sug-
gest AvgP and not using FC because methods should be permutation-invariant. From
my opinion, FC actually is permutation-invariant, which parameterizes each entry
of node feature matrix in a same way ignoring the location or spatial relation. The
reason for not using FC here is mostly because the numbers of nodes of different data
after 3 pooling layers are different because l2 norms (weight) for each pair of nodes
with same index in different data are different, affecting graclus coarsening which
using a greedy strategy w.r.t weight and node degree (same for different data).

Experiment II*

In order to evaluate the performance of directly applying FC without AvgP, an additional
comparison experiment made, with architecture: SConv((k1, k2, k3), 1, 32)→ SConv((k1, k2, k3), 32, 64)→
×SConv((k1, k2, k3), 64, 64)→ FC(6). The reason for removing the last 2 FC layers (com-

82

Chapter 6. 6.5. EXPERIMENTS

without pooling with pooling directly FC

Anger 60.00% 56.00% 69.33%

Disgust 67.06% 60.00% 62.35%

Fear 40.00% 61.43% 58.57%

Happiness 80.00% 87.14% 91.43%

Sadness 44.71% 64.71% 75.29%

Surprise 83.53% 76.47% 80.00%

Total 62.8% 67.5% 72.8%

Table 6.3: The prediction accuracy for each class of three architectures

without pooling with pooling directly FC

Training Time (1 epoch) 145.7s 93.2s 226.8s

Table 6.4: The training time of 1 epoch for each architecture. All experiments are performed
on the same NVIDIA GTX 1080.

pared to architecture 2.1 and 2.2) is to keep the same order of magnitude of parameters
so that the comparison is fair (Table 6.2). Figure 6.9 shows the rate of convergence is
extremely fast. After 1 epoch, the prediction accuracy achieves 68.1% and loss is reduced
to 0.973; at epoch 3, the accuracy reaches the highest with 72.8% and then lowest loss
0.950 The downside is that this structure is much more prone to overfitting. After epoch
3, test loss starts to increase and train loss keep decreasing until reaching 0. Table 6.3 and
6.4 show the prediction accuracy for each class and training time of three architectures re-
spectively. Table (A.5) provides detail prediction information for each class with confusion
matrix. It’s obviously that directly FC structure is capable of improving model learning
performance and generalization performance, while pooling structure can alleviate overfit-
ting to some extent, stabilize the model and reduce training time.

Figure 6.10: The view of transforming node feature matrix to vector with AvgP or directed
stretch and then final fully connected layer. After pooling, N generally is varied, leading to a
variable length vector N × F , which makes it hard to initialize a FC layer.

83

Chapter 6. 3D Facial Expression Recognition SECTION 6.5.

Strategy The directions worthy to explore is to add regularization (data augmentation,
batch normalization, dropout) and more layers to resolve the problem of overfitting and
improve model performance with the same convolutional operation. It’s beneficial to keep
pooling structure, which reduces training time remarkably and raises prediction accuracy,
but it also means a directly FC is not allowed without adding AvgP. The issue left is how
to train model effectively with more layers since experiment 1 shows it’s hard to capture
underlying features with deeper architecture.

6.5.3 Experiment III

We use 6 convolutional layers (compared to 3 convs in experiment 2) in this part (Figure
6.11), and batch normalization, data augmentation, L2 weight decay are adopted as regu-
larization strategy. Inspiration of additionally identity mapping in architecture 3.2 and 3.3
comes from ResNet [25], which stems from the idea of deeper model should produce no
higher training error than its shallower counterpart. Such modification enables model to
optimize easier and to gain accuracy. Identity mapping is defined as:

y = F(x,Wi) + x (6.9)

Where x and y are the input and output vectors of the layers. The function F(x,Wi)
represents the residual mapping to be learned. In order to alleviate the negative influence
of AvgP (N × F features are simply reduced to 1 × F), architecture 3.3 increased feature
channels in order to keep more neurons after AvgP. A 1D convolution is performed (on
node feature matrix) to match the input and output feature dimensions:

y = F(x,Wi) +Wsx (6.10)

Training was done using the SGD optimizer with momentum 0.9, initial learning rate
0.01, divided by 10 when in plateaus in 10 epochs, and L2 regularization 1e-5. Model
is initialized with He et al. [24]. As before, cross entropy is used. Experiments were
performed with GTX NVIDI 1080.

Discussion Figure 6.12 and 6.13 show loss and accuracy of three architectures. The pre-
diction accuracy for three architectures are 68.5%, 75.3%, 71.5% respectively. Currently,
the state of the art result is provided by Cheng et al. [10] with 70.27% for Session 1. The
training times for each epoch are 148s, 146.6s, 557.7s respectively. It should be noticed
that:

1. Regularizations and overfitting. As we have already discussed in experiment 2, reg-
ularizations required to address the problem of overfitting, but it requires discussion
about the capacity or performance of varies regularization strategies (dropout, batch
normalization, data augmentation, weight decay), all of which can be simply consid-
ered as adding random noise in the training process and marginalizing over the noise
in testing process. Some incomplete experiments are taken to tell the difference these
strategies (not shown here). The results show that use batch normalization when
removing Dropout, the effect is much faster learning without a loss in generalization.

84

Chapter 6. 6.5. EXPERIMENTS

Figure 6.11: Architectures 3.1, 3.2, 3.3 respectively for experiment 3. ReLU activation function
is used after every SConv.

This is particular remarkable when moving from 3layers to 6layers. Moreover, bet-
ter backbone architecture looks more important than directly adding regularizations
(See Figure 6.12), though all of three architectures behave better compared to ex-
periment 2.

2. Backbone architecture. Figure 6.13 shows architectures with identity mapping are
easier to optimize, and can gain accuracy from considerably increased depth. Be-
cause of time is limited, experiment of architecture 3.3 was terminated before 100
epochs. I expected better performance of architecture 3.3 compared to architecture
3.2, since more features are kept after averaging node features, but from the results,
it isn’t clear.

3. Prediction accuracy for each class and confusion matrix. All the experiments (Ta-
ble 6.5) show that predictions for ’Surprise’ and ’Happiness’ tend to be more accuracy,
and for ’Fear’, ’Sadness’ are still low. However, when compared with experiment 2,
the improvement is significant. When analysis with confusion matrix Table (A.6, A.7,
A.8), it is clearer that ’Sadness’ is mostly mistakenly recognized as ’Anger’; ’Anger’ is

85

Chapter 6. 3D Facial Expression Recognition SECTION 6.5.

(a) Architecture 3.1 with batch
normalization

(b) Architecture 3.2 with iden-
tity mapping

(c) Architecture 3.3 with di-
mension changing

Figure 6.12: The train and test loss for experiment 3.

(a) Architecture 3.1 with batch
normalization

(b) Architecture 3.2 with iden-
tity mapping

(c) Architecture 3.3 with di-
mension changing

Figure 6.13: The train and test accuracy for experiment 3.

tended to be recognized as ’Disgust’ and ’Sadness’; however, there is considerable
number of ’Fear’ mistakenly recognized as ’Surprise’, which is abnormal. It requires
time to check the actual look and labels of original data.

4. Performance comparison between cleaned and original data. Figure 6.14 shows
4.9% prediction accuracy improvement after clean data. This proves the hypothesis
that such erosion input data would affect the model learning.

6.5.4 Conclusion

In this section, we first introduce our proposed model which achieved state-of-the-art per-
formance on 4DFAB dataset. Then we illustrate our experiments design in detail. From
experiments, we found one issue in this field: pooling and directly FC structure (without
AvgP) improve model performance and accelerate training process, but the new variant of
pooling strategy for mesh-structured data with stable downsampling property is required
so that the model can integrate pooling operation and directly FC altogether. We choose
an alternative way from incorporating residual structure and better training strategies
(e.g. initialization, batch normalization, combine Adam and SGD, adaptive learning rate
decay, etc).

86

Chapter 6. 6.5. EXPERIMENTS

Figure 6.14: Train and test with original and cleaned data using architecture 3.2.

Architecture 3.1 Architecture 3.2 Architecture 3.3

Anger 50.61% 77.33% 60.00%

Disgust 60.00% 75.29% 71.76%

Fear 48.57% 61.43% 52.86%

Happiness 85.71% 81.43% 88.57%

Sadness 72.94% 63.53% 62.35%

Surprise 90.59% 91.76% 91.76%

Total 68.5% 75.3% 71.5%

Table 6.5: The prediction accuracy of experiment 2 for each class

87

Chapter 7

Conclusion and Future Directions

The recent emergence of geometric deep learning allows us to bring the prosperity of deep
learning to various communities and application domains. We have already seen these
approaches have consistently push the state-of-the-art on tasks such as citation network
prediction and shape correspondence. In this thesis, we use geometric deep learning to
address two challenges arising in computational biology (i.e. protein function prediction)
and computer graphics (i.e. 3D facial expression recognition) for decades. The underlying
data structures for these two problems are graphs and manifolds, which constitute back-
bone of geometric deep learning. We expect the methods proposed in this thesis could
benefit for applications in other domains.

In this thesis, we begin with providing Euclidean deep learning basis and the graph
theory. We should stress that thoroughly understanding of Chapter 2 plays a vital role
for understanding the high-level design intuition of the methods we review in Chapter
3. We introduce the state-of-the-art progress with regard to spectral and spatial graph
convolution in Chapter 4. In this chapter, we also provide detailed discussion and analysis
to compare the performance, difference of each operator. In particular, we find GCN,
ChebyConv are superior than others when the underlying data structure is graph. On the
other hand, spatial convolutions such B-splineConv are believed to be a better choice for
dealing with problems on manifolds. The analysis and experimental conclusions in this
Chapter assist us to design better methods when dealing with protein function prediction
and 3D facial expression recognition.

In Chapter 5, we start from designing a multi-layer graph convolutional network to deal
with the protein this problem, but the results are not as expecting. We then resort to build
an denosiing graph aotuencoder so that we can take use of the power of SVM over the
task of multi-label classification. We still don’t get the results which we assumed. Finally,
we find the problem and design a deep graph neural network, which is capable of learning
graph high-dimensional topological structure and make prediction over nodes. We believe
such model can also be applied to other fields or problems, where the underlying data is
structured as graph.

In Chapter 6, we design a efficient residual graph convolutional network to recognize
3D facial expressions. To our best knowledge, we are the first to bring geometric deep
learning in this domain. In this chapter, we provide experiments in detail, which show
clearly how we make progress and how we find and solve problems step by step.

88

Appendix . 7.1. FUTURE DIRECTIONS

7.1 Future Directions

7.1.1 Bach training large-scale network with graph convolution

When we dealt with protein function prediction using our proposed deep graph neural
networks, we were held back by high GPU memory requirement because we cannot train
model with a batch size nodes at each iteration. For example, if we consider about cheby-
shev convolution, the laplancian matrix L ∈ RN×N is required while it is not reasonable
to train with only a small part of nodes. If we consider about spatial convolution such
as BSplineConv, the aggregation process also relies on edge connectivity, while randomly
selecting a batch nodes cannot guarantee it.

7.1.2 Differentiable and Stable Mesh Pooling Strategy

Since the general pooling choice of Graclus graph coarsening would normally lead to out-
puts with different topology, we then need to study about stable mesh pooling strategy. We
have already proved that this would accelerate model training and improve performance.

On the other hand, differentiable pooling or subsampling and upsampling method are
important, which is the key for designing 3D or high-dimensional generative models.

7.1.3 3D Generative Models

In the recent years, we have already seen the prosperity of generative models in 2D image
domain, while it would produce more interesting and significant work if we make it pos-
sible to build 3D mesh generative models, or graph generative models. Currently, we are
already engaged in this field and already achieved some good results with MeshVAE and
MeshGANs.

89

Appendix A

Ethics Checklist

Yes No

Section 1: HUMAN EMBRYOS/FOETUSES

Does your project involve Human Embryonic Stem Cells? X

Does your project involve the use of human embryos? X

Does your project involve the use of human foetal tissues / cells? X

Section 2: HUMANS

Does your project involve human participants? X

Section 3: HUMAN CELLS / TISSUES

Does your project involve human cells or tissues? (Other than from
Human Embryos/Foetuses i.e. Section 1)?

X

Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or processing? X

Does it involve the collection and/or processing of sensitive personal
data (e.g. health, sexual lifestyle, ethnicity, political opinion, religious
or philosophical conviction)?

X

Does it involve processing of genetic information? X

Does it involve tracking or observation of participants? It should be
noted that this issue is not limited to surveillance or localization data. It
also applies to Wan data such as IP address, MACs, cookies etc.

X

Does your project involve further processing of previously collected per-
sonal data (secondary use)? For example Does your project involve
merging existing data sets?

X

Section 5: ANIMALS

Does your project involve animals? X

Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries? X

90

Appendix A.

If your project involves low and/or lower-middle income countries, are
any benefit-sharing actions planned?

X

Could the situation in the country put the individuals taking part in the
project at risk?

X

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to
the environment, animals or plants?

X

Does your project deal with endangered fauna and/or flora /protected
areas?

X

Does your project involve the use of elements that may cause harm to
humans, including project staff?

X

Does your project involve other harmful materials or equipment, e.g.
high-powered laser systems?

X

Section 8: DUAL USE

Does your project have the potential for military applications? X

Does your project have an exclusive civilian application focus? X

Will your project use or produce goods or information that will require
export licenses in accordance with legislation on dual use items?

X

Does your project affect current standards in military ethics e.g., global
ban on weapons of mass destruction, issues of proportionality, discrim-
ination of combatants and accountability in drone and autonomous
robotics developments, incendiary or laser weapons?

X

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist
abuse?

X

Does your project involve information on/or the use of biological-,
chemical-, nuclear/radiological-security sensitive materials and explo-
sives, and means of their delivery?

X

Does your project involve the development of technologies or the cre-
ation of information that could have severe negative impacts on human
rights standards (e.g. privacy, stigmatization, discrimination), if misap-
plied?

X

Does your project have the potential for terrorist or criminal abuse e.g.
infrastructural vulnerability studies, cybersecurity related project?

X

Section 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright
licensing implications?

X

91

Appendix A. Ethics Checklist SECTION A.1.

Will your project use or produce goods or information for which there
are data protection, or other legal implications?

X

Section 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration? X

A.1 Brief Statement

I confirm all the ticks on the above ethics checklist are made by my own and are consis-
tent with this project. We use the following dataset in this thesis, i.e. [50], 4, BioGRID
(https://thebiogrid.org/) and STRING https://string-db.org/ protein interaction network,
4DFAB [10], all of which are publicly available.

92

https://thebiogrid.org/
https://string-db.org/

List of Tables

4.1 Comparison between Euclidean CNN and spectral graph convolution oper-
ators. We assume the graph is sparse where O(|E|) = O(|V|), so there’s a
constant maximum number of edges per vertex. Here we denote N = |V|. 42

4.2 Comparison between different spatial mesh convolutional operators. For
SplineCNN, it doesn’t need a hand-crafted descriptor for each node, while
OSD or SHOT descriptors are considered to have more information about
intrinsic shape context [35]. 43

4.3 Indication of the required input data and hyperparameters for the selected
graph convolutional operators. 43

4.4 Summary of results in terms of classification accuracy. Displayed accuracies
are averaged over 10 experiments, where for each experiment the network
was trained for 200 epochs. 45

4.5 Summary of results in terms of classification accuracy over different hidden
layer outputs. Displayed accuracies are averaged over 10 experiments. . . 46

4.6 Description of the basic module used in this problem. 48

5.1 The training time for each architecture in 1 epoch. All experiments are
performed on the same NVIDIA GTX 1080. 60

6.1 The prediction accuracy of experiment II for each class 82
6.2 The comparison of parameters and GPU memory for two structures, namely

directly FC and 2FC after AvgP. Parameters counted here are only from lay-
ers behind SConv. The memory for each parameter is 4bytes since it is saved
as torch.cuda.FloatTensor. 82

6.3 The prediction accuracy for each class of three architectures 83
6.4 The training time of 1 epoch for each architecture. All experiments are

performed on the same NVIDIA GTX 1080. 83
6.5 The prediction accuracy of experiment 2 for each class 87

A.2 Confusion matrix of experiment 1 in epoch 25 94
A.3 Confusion matrix of experiment 2 for 3Convs without pooling 94
A.4 Confusion matrix of experiment 2 for 3Convs with pooling 94
A.5 Confusion matrix of experiment 2 for 3Convs with directly FC 95
A.6 Confusion matrix of experiment 2 for architecture 3.1 95
A.7 Confusion matrix of experiment 2 for architecture 3.2 95
A.8 Confusion matrix of experiment 2 for architecture 3.3 96

93

LIST OF TABLES SECTION A.1.

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 0 0 0 75 0 0

Disgust 0 0 0 85 0 0

Fear 0 0 0 70 0 0

Happiness 0 0 0 70 0 0

Sadness 0 0 0 85 0 0

Surprise 0 0 0 85 0 0

Table A.2: Confusion matrix of experiment 1 in epoch 25

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 45 20 0 1 5 4

Disgust 0 57 17 7 1 3

Fear 0 9 28 4 12 17

Happiness 4 7 2 56 0 1

Sadness 24 13 8 2 38 0

Surprise 1 0 8 0 5 71

Table A.3: Confusion matrix of experiment 2 for 3Convs without pooling

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 42 12 3 1 16 1

Disgust 0 51 23 1 6 4

Fear 2 4 43 0 3 18

Happiness 4 2 3 61 0 0

Sadness 16 4 10 0 55 0

Surprise 0 0 20 0 0 65

Table A.4: Confusion matrix of experiment 2 for 3Convs with pooling

94

Appendix A. LIST OF TABLES

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 52 12 0 0 11 0

Disgust 5 53 14 5 8 0

Fear 0 6 41 5 5 13

Happiness 0 0 0 64 5 1

Sadness 21 0 0 0 64 0

Surprise 0 0 17 0 0 68

Table A.5: Confusion matrix of experiment 2 for 3Convs with directly FC

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 38 6 8 0 23 0

Disgust 0 51 20 5 4 5

Fear 0 1 34 5 2 28

Happiness 7 1 2 60 0 0

Sadness 16 0 5 1 62 1

Surprise 0 0 4 0 4 77

Table A.6: Confusion matrix of experiment 2 for architecture 3.1

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 58 14 2 0 1 0

Disgust 0 64 10 5 5 1

Fear 0 3 43 2 2 20

Happiness 2 6 1 57 4 0

Sadness 24 2 3 0 54 2

Surprise 0 0 2 0 5 78

Table A.7: Confusion matrix of experiment 2 for architecture 3.2

95

LIST OF TABLES SECTION A.1.

Predicted Class

Anger Disgust Fear Happiness Sadness Surprise

Actual Class

Anger 45 15 4 0 11 0

Disgust 0 61 11 4 9 0

Fear 2 6 37 2 3 20

Happiness 4 1 0 62 3 0

Sadness 29 3 0 0 53 0

Surprise 0 0 4 0 3 78

Table A.8: Confusion matrix of experiment 2 for architecture 3.3

96

List of Figures

1.1 The underlying data structure of a social network or 3D shape is represented
as graphs (left) or manifolds (right). 2

1.2 Classifying research papers in the CORA dataset with GCN [34]. Shown is
the citation graph, where each node is a paper, and an edge represents a ci-
tation. Vertex fill and outline colors represents the predicted and groundtruth
labels, respectively; ideally, the two colors should coincide. We produce the
figure with GCN [34]) . 3

1.3 Two problems towards geometric deep learning. 4

1.4 An example protein interaction network, produced through the STRING
web resource. Patterns of protein interactions within networks are used
to infer function. Here, products of the bacterial trp genes coding for tryp-
tophan synthase are shown to interact with themselves and other, related
proteins. 5

1.5 Examples of 6 three-dimensional facial expressions of one participant in the
4DFAB database. 6

2.1 Typical convolutional neural network architecture [37] used in computer
vision applications. 8

2.2 Neurons of a convolutional layer (blue), connected to their receptive field
(red) . 10

2.3 Pooling layer downsamples the volume spatially, independently in each depth
slice of the input volume. Left: In this example, the input volume of size
[224x224x64] is pooled with filter size 2, stride 2 into output volume of size
[112x112x64]. Notice that the volume depth is preserved. Right: The most
common downsampling operation is max, giving rise to max pooling, here
shown with a stride of 2. That is, each max is taken over 4 numbers (little
2x2 square). 11

2.4 Examples of 6 activation functions we used in the thesis. 12

2.5 The structure of a standard autoencoder. 14

3.1 A random positive graph signal on the vertices of the Petersen graph. The
height of each blue bar represents the signal value at the vertex where the
bar originates. 16

97

https://string-db.org/
https://string-db.org/

LIST OF FIGURES SECTION A.1.

3.2 Equivalent representations of a graph in the spatial and the spectral do-
mains. In this case, the signal is a heat kernel which is actually defined
directly in the gragh spectral domain by ĝ(λl) = e−5λl The signal plotted in
(a) is then determined by taking an inverse grapgh Fourier transform (3.6)
of ĝ. 18

3.3 The translated signals (a) T100g, (b) T200g, and (c) T2000g, where g is the
heat kernel shown in Figures 6.13(a) and 6.13(c) 23

3.4 Overview of the multi-level algorithm (for k = 2). 24

4.1 Architecture of a CNN on graphs. (Figure reproduced from [15]) 27

4.2 Example of Graph Coarsening and Pooling. We carry out a max pooling of
size 4 on a signal x ∈ R8 on G0, the original graph given as input. Note that
it originally possesses n0 = |V0| = 8 vertices, arbitrarily ordered. For a pool-
ing of size 4, two coarsenings of size 2 are needed: let Graclus gives G1 of
size n1 = |V1| = 5, then G2 of size n2 = |V2| = 3,the coarsest graph. Sizes are
thus set to n2 = 3, n1 = 6, n0 = 12 and fake vertices (in blue) are added to V1

(1 vetex) and V0 (4 vertex) to pair with the singeltons (in orange), such that
each vertex has exactly two children. Vertices in V2 are then arbitrarily or-
dered and vertices in V1 and V0 are ordered consequently. At that point the
arrangement of vertices in V0 permits a regular 1D pooling on x ∈ R12 such
that z = [max(x(0),x(1)),max(x(4),x(5),x(6)),max(x(8),x(9),x(10))] ∈ R3,
where the signal components x(2), x(3), x(7), x(11) are set to a neutral
value. 29

4.3 A toy example illustrating the difficulty of generalizing spectral filtering
across non-Euclidean domains. Left: a function defined on a manifold (func-
tion values are represented by color); middle: result of the application of an
edge-detection filter in the frequency domain; right: the same filter applied
on the same function but on a different (nearly-isometric) domain produces
a completely different result. The reason for this behavior is that the Fourier
basis is domain-dependent, and the filter coefficients learnt on one domain
cannot be applied to another one in a straightforward manner. The figure is
from Bronstein et al. [6]. 30

4.4 Plot of the first five Chebyshev T polynomials 35

4.5 Examples for spatial convolution in geometric deep learning for (a) image
graph representations and (b) meshes. 37

4.6 Left: intrinsic local polar coordinates , on manifold around a point marked
in white. Right: patch operator kernel functions K(u(i, j)) used in different
generalizations of convolution on the manifold (hand-crafted in GCNN and
ACNN and learned in MoNet. Figure is from [43]. 40

4.7 Examples of B-spline basis degrees (a) m = 1 and (b) m = 2 for kernel
dimensionality d = 2. The heights of the red dots are the trainable parame-
ters for a single input feature map. They are multiplied by the elements of
the B-spline tensor product basis before influencing the kernel value. (The
figure is from [18]) . 42

98

Chapter A. LIST OF FIGURES

4.8 Architecture for the problem graph vertex classification based on Cora cita-
tion network. Left: given the input network with 500 labelled nodes colored
with the groundtruth class; Right: predictions obtained applying graph con-
volution over the dataset, where marker fill color represents the predicted
class; marker outline color represents the groundtruth class. The prediction
network is produced with B-SplineConv. 44

4.9 Test Accuracy over B-splineConv, GCN and ChebyConv on Cora Citation Net-
work. 46

4.10 List of comparison of GCN, ChebyConv, B-SplineConv and FC over different
hidden layer outputs. 47

4.11 GPU memory usage comparison between GCN, ChebyConv, B-SplineConv
and FC. Training time is evaluated over second unit and GPU memory usage
is over MB. 47

4.12 Prediction accuracy of each node of the meshes in testset. 49

5.1 Architectures employed for our experiments. ReLU activation function is
used for the left two architectures, whereas, ELU activation function is used
for the right two architectures. For all architectures, binary cross entropy
loss is used. To make the comparison between Cheb and GCN fairly, Cheb
used the degree of 1 (so with r = 2). The kernel dimension for SConv is
1, and kernel size is 2. Adjacency matrix A and pseudo-coordinates are ob-
tained from protein interaction network. We trivially initialize node feature
matrix F = [1, . . . , 1]T ∈ RN×1. 53

5.2 Human BioGRID network with 15,978 nodes and 217,076 edges. Each node
is colored as the sort of node degree from the highest to the lowest, yielding
shallow color to dark blue color. 55

5.3 Mouse BioGRID network with 5,440 nodes and 13,250 edges. Each node is
colored as the sort of node degree from the highest to the lowest, yielding
shallow color to dark blue color. 56

5.4 Yeast BioGRID network with 5,932 nodes and 88,677 edges. Each node is
colored as the sort of node degree from the highest to the lowest, yielding
shallow color to dark blue color. 57

5.5 The performance of three methods (four architectures) in analyzing human
BioGRID networks with MF functional annotations (274 annotations in to-
tal), which in particular MF ontology (from 31 to 300) is further divided
into two levels annotating 101-300 and 31-100 proteins respectively. Per-
formance is measured by the area under the precision-recall curve, summa-
rized over all GO terms both under the micro-averaging (m-AUPR), macro-
averaging (M-AUPR) schemes and F1 score. The error bars are computed
based on 5 trials. 58

99

LIST OF FIGURES SECTION A.1.

5.6 The performance of three methods (four architectures) in analyzing human
BioGRID networks with BP (1282 annotations in total) and CC (225 an-
notations) functional annotations. Performance is measured by the area
under the precision-recall curve, summarized over all GO terms both under
the micro-averaging (m-AUPR), macro-averaging (M-AUPR) schemes and
F1 score. The error bars are computed based on 5 trials. Because of high
GPU memory usage of GCN with respect to BP annotations (more than 8GB)
and our GPB resource is not satisfied, we didn’t get the result of this series
experiments. 58

5.7 The performance of three methods (four architectures) in analyzing mouse
BioGRID networks with MF (117 annotations), BP (1077 annotations) and
CC (157 annotations) functional annotations. Performance is measured by
the area under the precision-recall curve, summarized over all GO terms
both under the micro-averaging (m-AUPR), macro-averaging (M-AUPR) schemes
and F1 score. The error bars are computed based on 5 trials. 59

5.8 The performance of three methods (four architectures) in analyzing yeast
BioGRID networks with MF (157 annotations), BP (688 annotations), CC
(170 annotations) functional annotations. Performance is measured by the
area under the precision-recall curve, summarized over all GO terms both
under the micro-averaging (m-AUPR), macro-averaging (M-AUPR) schemes
and F1 score. The error bars are computed based on 5 trials. 59

5.9 The loss of three methods (four architectures) in analyzing human BioGRID
networks with MF functional annotations. Both train and test loss are av-
eraged over 5 trials in 200 epochs. The initial learning rate is 0.01 and
decayed when test loss is in plateaus in 20 epochs. 61

5.10 The loss of three methods (four architectures) in analyzing human BioGRID
networks with MF functional annotations. Both train and test loss are aver-
aged over 5 trials in 1000 epochs. The initial learning rate is 0.01, divided
by 10 every 100 epochs. The left comparison experiment keeps the original
weight setting, and the middle and the right one are initialized by Xavier
and Kaiming initialization respectively. 62

5.11 The architecture of denoising graph autoencoder incorporated with SVM
classifier. 63

5.12 Comparison between architectures of GraphAE with SVM and Multi-Layer
ChebyConv Network over BioGRID mouse network on MF functional anno-
tations. 66

5.13 The architecture of deep graph neural network. The vertex feature obtained
from minimizng first-order proximity loss and second-order proximity loss
are concatenate into a node feature matrix F ∈ RN×d. In the last layer,
network produce C-dimensional vector for each vertex. Here C denotes the
classes in total. We use ChebyConv and BSplineConv as out basic convolu-
tion module. Only when using BSplineConv, the module PseudoCooridnates
is required. 69

100

Appendix A. LIST OF FIGURES

5.14 The performance of improved 2ChebyConv and original 2ChebyConv in an-
alyzing mouse BioGRID networks with MF (117 annotations). Performance
is measured by the area under the precision-recall curve,summarized over
all GO terms both under the micro-averaging (m-AUPR), macro-averaging(M-
AUPR) schemes and F1 score. The error bars are computed based on 5 trials 70

5.15 The performance of improved NEGraphAE, GraphAE and deepNF in analyz-
ing mouse BioGRID networks with MF (117 annotations). Performance is
measured by the area under the precision-recall curve,summarized over all
GO terms both under the micro-averaging (m-AUPR), macro-averaging(M-
AUPR) schemes and F1 score. The error bars are computed based on 5 trials. 71

6.1 The front view of corrupted data. 74
6.2 The residual mesh convolution architecture. PReLU activation function is

applied on the output of each batch normalization layer expect for the last
layer, where we apply softmax. It should be noting that non-linear activa-
tion function is applied after residual aggregation. Lin(o) represents 1 × 1
convolution solely operated on each node. 74

6.3 Experiment I with similar architecture and experiment setting to the paper
of SplineCNN. 6.13(a) shows the comparison between train loss and test
loss in 25 epoch; 6.13(c) shows the comparison between train accuracy and
test accuracy in 25 epoch. 78

6.4 A Conceptual Sketch of Flat and Sharp Minima. The image is from Keskar
et al. [31] . 79

6.5 For non-linear deep neural networks, the local region of the cross section of
the loss function is nearly a paraboloid. With batch size = 1, it tends to be
hard for training since the momentum in each iteration is highly likely to be
cancelled out. The view of gradient descent with batch size equal to 1. . . 79

6.6 The architectures of 3conv layer with no pooling (architecture 2.1) and
pooling (architecture 2.2) respectively from left to right. SConv (3, 5)
means kernel dimension 3, kernel size 5 (B-spline basis degree of 1). The
remaining experiments hold the same definition. 80

6.7 The train and test loss for experiment II. Optimizer is changed to Adam from
11th epoch for both architectures. 81

6.8 The train and test accuracy for experiment II. Optimizer is changed to Adam
from 11th epoch for both architectures. 81

6.9 The loss and accuracy of experiment 2* with directly FC structure. 81
6.10 The view of transforming node feature matrix to vector with AvgP or di-

rected stretch and then final fully connected layer. After pooling, N gener-
ally is varied, leading to a variable length vector N×F , which makes it hard
to initialize a FC layer. 83

6.11 Architectures 3.1, 3.2, 3.3 respectively for experiment 3. ReLU activation
function is used after every SConv. 85

6.12 The train and test loss for experiment 3. 86
6.13 The train and test accuracy for experiment 3. 86
6.14 Train and test with original and cleaned data using architecture 3.2. . . . 87

101

Bibliography

[1] Ambady, N. and Rosenthal, R. (1992). Thin slices of expressive behavior as predictors
of interpersonal consequences: A meta-analysis. Psychological bulletin, 111(2):256.
pages 6

[2] Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Comput-
ing Surveys (CSUR), 40(1):1. pages 1

[3] Bhagat, S., Cormode, G., and Muthukrishnan, S. (2011). Node classification in social
networks. In Social network data analytics, pages 115–148. Springer. pages 1

[4] Bogo, F., Romero, J., Loper, M., and Black, M. J. (2014). Faust: Dataset and evaluation
for 3d mesh registration. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3794–3801. pages 41, 48, 92

[5] Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. (2016). Learning shape cor-
respondence with anisotropic convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 3189–3197. pages 26, 36, 38

[6] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Ge-
ometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42. pages i, 3, 30, 48, 50, 72, 98

[7] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203. pages 26, 29,
30, 32

[8] Chan, P. K., Schlag, M. D., and Zien, J. Y. (1994). Spectral k-way ratio-cut partitioning
and clustering. IEEE Transactions on computer-aided design of integrated circuits and
systems, 13(9):1088–1096. pages 24

[9] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):27. pages 6, 64, 65

[10] Cheng, S., Kotsia, I., Pantic, M., and Zafeiriou, S. (2017). 4dfab: A large scale 4d
facial expression database for biometric applications. arXiv preprint arXiv:1712.01443.
pages i, iii, 6, 72, 84, 92

[11] Cho, H., Berger, B., and Peng, J. (2016). Compact integration of multi-network
topology for functional analysis of genes. Cell systems, 3(6):540–548. pages 4, 55, 60,
65

102

Appendix A. BIBLIOGRAPHY

[12] Chung, F. R. (1997). Spectral graph theory. Number 92. American Mathematical Soc.
pages 16

[13] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.
pages 12

[14] Coifman, R. R. and Maggioni, M. (2006). Diffusion wavelets. Applied and Computa-
tional Harmonic Analysis, 21(1):53–94. pages 18

[15] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural net-
works on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems, pages 3844–3852. pages 26, 27, 28, 29, 33, 34, 44, 51, 98

[16] Dhillon, I. S., Guan, Y., and Kulis, B. (2007). Weighted graph cuts without eigen-
vectors a multilevel approach. IEEE transactions on pattern analysis and machine intelli-
gence, 29(11). pages 24, 29

[17] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages
2224–2232. pages 3

[18] Fey, M., Lenssen, J. E., Weichert, F., and Müller, H. (2017). Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. arXiv preprint arXiv:1711.08920. pages
26, 36, 40, 41, 42, 51, 75, 78, 82, 98

[19] Gligorijević, V., Barot, M., and Bonneau, R. (2017). deepnf: Deep network fusion for
protein function prediction. bioRxiv, page 223339. pages 5, 55, 60, 61, 65

[20] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. pages 61

[21] Grady, L. J. and Polimeni, J. R. (2010). Discrete calculus: Applied analysis on graphs
for computational science. Springer Science & Business Media. pages 15

[22] Graham, B. (2014). Fractional max-pooling. arXiv preprint arXiv:1412.6071. pages
11

[23] Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on graphs
via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–
150. pages 21, 22, 23, 33

[24] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034. pages 11, 61, 64, 75, 84

[25] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778. pages 35, 84

103

BIBLIOGRAPHY SECTION A.1.

[26] Henaff, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163. pages 26, 31, 32

[27] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580. pages 52

[28] Horn, R. A., Horn, R. A., and Johnson, C. R. (1990). Matrix analysis. Cambridge
university press. pages 20

[29] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. pages
63, 76

[30] Karypis, G. and Kumar, V. (1998). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392.
pages 24

[31] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016).
On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836. pages 79, 101

[32] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. pages 29, 44, 78

[33] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114. pages 13

[34] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907. pages 3, 26, 35, 44, 51, 97

[35] Kokkinos, I., Bronstein, M. M., Litman, R., and Bronstein, A. M. (2012). Intrinsic
shape context descriptors for deformable shapes. In Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on, pages 159–166. IEEE. pages 43, 93

[36] Lafon, S. and Lee, A. B. (2006). Diffusion maps and coarse-graining: A unified frame-
work for dimensionality reduction, graph partitioning, and data set parameterization.
IEEE transactions on pattern analysis and machine intelligence, 28(9):1393–1403. pages
24

[37] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.
pages 2, 8, 97

[38] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. pages 2

[39] Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social
networks. journal of the Association for Information Science and Technology, 58(7):1019–
1031. pages 1

104

Appendix A. BIBLIOGRAPHY

[40] Litman, R. and Bronstein, A. M. (2014). Learning spectral descriptors for deformable
shape correspondence. IEEE transactions on pattern analysis and machine intelligence,
36(1):171–180. pages 43

[41] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3. pages 64

[42] Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst, P. (2015). Geodesic con-
volutional neural networks on riemannian manifolds. In Proceedings of the IEEE in-
ternational conference on computer vision workshops, pages 37–45. pages 26, 36, 37,
48

[43] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.
(2017a). Geometric deep learning on graphs and manifolds using mixture model cnns.
In Proc. CVPR, volume 1, page 3. pages 36, 39, 40, 44, 98

[44] Monti, F., Bronstein, M., and Bresson, X. (2017b). Geometric matrix completion with
recurrent multi-graph neural networks. In Advances in Neural Information Processing
Systems, pages 3700–3710. pages 3, 26

[45] Mostafavi, S. and Morris, Q. (2012). Combining many interaction networks to pre-
dict gene function and analyze gene lists. Proteomics, 12(10):1687–1696. pages 4,
60

[46] Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008). Gen-
emania: a real-time multiple association network integration algorithm for predicting
gene function. Genome biology, 9(1):S4. pages 4

[47] Narang, S. K. and Ortega, A. (2012). Perfect reconstruction two-channel wavelet fil-
ter banks for graph structured data. IEEE Transactions on Signal Processing, 60(6):2786–
2799. pages 17

[48] Pantic, M., Nijholt, A., Pentland, A., and Huanag, T. S. (2008). Human-centred
intelligent human? computer interaction (hci2): how far are we from attaining it?
International Journal of Autonomous and Adaptive Communications Systems, 1(2):168–
187. pages 6

[49] Piegl, L. and Tiller, W. (2012). The NURBS book. Springer Science & Business Media.
pages 40

[50] Rao, N., Yu, H.-F., Ravikumar, P. K., and Dhillon, I. S. (2015). Collaborative filter-
ing with graph information: Consistency and scalable methods. In Advances in neural
information processing systems, pages 2107–2115. pages 92

[51] Salti, S., Tombari, F., and Di Stefano, L. (2014). Shot: Unique signatures of his-
tograms for surface and texture description. Computer Vision and Image Understanding,
125:251–264. pages 43

105

BIBLIOGRAPHY SECTION A.1.

[52] Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of pooling operations
in convolutional architectures for object recognition. In International conference on
artificial neural networks, pages 92–101. Springer. pages 11

[53] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).
Collective classification in network data. AI magazine, 29(3):93. pages 41, 44, 50

[54] Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans-
actions on pattern analysis and machine intelligence, 22(8):888–905. pages 24

[55] Shuman, D. I., Ricaud, B., and Vandergheynst, P. (2012). A windowed graph fourier
transform. In Statistical Signal Processing Workshop (SSP), 2012 IEEE, pages 133–136.
Ieee. pages 22

[56] Smola, A. J. and Kondor, R. (2003). Kernels and regularization on graphs. In Learning
theory and kernel machines, pages 144–158. Springer. pages 19

[57] Spielman, D. A. (2007). Spectral graph theory and its applications. In Foundations of
Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages 29–38. IEEE.
pages 20

[58] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806. pages 11

[59] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on
World Wide Web, pages 1067–1077. International World Wide Web Conferences Steer-
ing Committee. pages 67

[60] Tang, S., Wang, X., Lv, X., Han, T. X., Keller, J., He, Z., Skubic, M., and Lao, S. (2012).
Histogram of oriented normal vectors for object recognition with a depth sensor. In
Asian conference on computer vision, pages 525–538. Springer. pages 6

[61] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of machine learning research, 11(Dec):3371–3408. pages
14

[62] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M.
(2010). Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242.
pages 1

[63] Zhu, X. and Rabbat, M. (2012a). Approximating signals supported on graphs. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference
on, pages 3921–3924. IEEE. pages 18

[64] Zhu, X. and Rabbat, M. (2012b). Graph spectral compressed sensing for sensor
networks. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on, pages 2865–2868. IEEE. pages 18

106

	1 Introduction
	1.1 Overview
	1.1.1 Traditional Machine Learning on Graphs and Manifolds
	1.1.2 Widespread Prosperity of Deep Learning on Euclidean Domains
	1.1.3 Geometric Deep Learning

	1.2 Background
	1.2.1 Protein Function Prediction
	1.2.2 3D Facial Expression Recognition

	1.3 Thesis Statement
	1.4 Contributions

	2 Preliminaries on Deep Learning from Euclidean Domains
	2.1 Convolutional Neural Networks
	2.1.1 Convolutional Layer
	2.1.2 Pooling Layer
	2.1.3 Activation Layer
	2.1.4 Fully Connected Layer

	2.2 Autoencoder
	2.2.1 Structure
	2.2.2 Denoising Autoencoder

	3 Preliminaries on Graph Theory
	3.1 Basic Defintions and Notations
	3.2 Spectral Graph Theory
	3.2.1 Graph Laplacian
	3.2.2 Graph Fourier Transform
	3.2.3 Discrete Calculus and Signal Smoothness
	3.2.4 Filtering
	3.2.5 Graph Convolution
	3.2.6 Translation

	3.3 Graph Coarsening

	4 Spectral and Spatial Graph Convolutions and Evaluation
	4.1 Spectral Convolution Operations
	4.1.1 General Spectral Graph CNNs
	4.1.2 Vanilla Spectral Graph CNNs
	4.1.3 SplineNets
	4.1.4 ChebNets
	4.1.5 GraphConvNets

	4.2 Spatial Graph Convolution Operations
	4.2.1 General Spatial Graph Convolution
	4.2.2 GeodesicCNN
	4.2.3 AnisotropicCNN
	4.2.4 MoNet
	4.2.5 SplineCNN

	4.3 Evaluation
	4.3.1 Semi-Supervised Graph Node Classification
	4.3.2 3D Shape Correspondence

	5 Protein Function Prediction
	5.1 Problem Definition
	5.2 Multi-Layer Graph Convolution Network
	5.2.1 Approach
	5.2.2 Assessment of Performance
	5.2.3 Data Preprocessing
	5.2.4 Results
	5.2.5 Discussion

	5.3 Denoising Graph Autoencoder with SVM Classifer
	5.3.1 Approach
	5.3.2 Assessment of Performance
	5.3.3 Data Prepossessing
	5.3.4 Results

	5.4 Novel Deep Graph Neural Networks
	5.4.1 Approach
	5.4.2 Results
	5.4.3 Conclusion

	6 3D Facial Expression Recognition
	6.1 Problem Definition
	6.2 Data Clean
	6.3 Approach
	6.3.1 Notations and Definitions
	6.3.2 Preprocessing
	6.3.3 Weight Initialization
	6.3.4 SplineConv
	6.3.5 Batch Normalization
	6.3.6 Graph Coarsening
	6.3.7 Average Pooling

	6.4 Training
	6.4.1 Loss Function
	6.4.2 Optimizer
	6.4.3 Adaptive Learning Rate Strategy

	6.5 Experiments
	6.5.1 Experiment I
	6.5.2 Experiment II
	6.5.3 Experiment III
	6.5.4 Conclusion

	7 Conclusion and Future Directions
	7.1 Future Directions
	7.1.1 Bach training large-scale network with graph convolution
	7.1.2 Differentiable and Stable Mesh Pooling Strategy
	7.1.3 3D Generative Models

	A Ethics Checklist
	A.1 Brief Statement

	List of Tables
	List of Figures
	Bibliography

